Minimal free resolution of square free monomial ideals

Nasrin Altafi Razlighi

Results via reduced simplicial homology

- Graded betti numbers and edge ideal
- Simplicial Trees

Hochster's formula

Hochster's formula:

$$
\beta_{i, j}\left(I_{\Delta}\right)=\sum_{|W|=j, W \subset[n]} \operatorname{dim}_{\mathbb{K}} \tilde{H}_{j-i-2}\left(\Delta_{W} ; \mathbb{K}\right)
$$

Simplicial complexes related to a simple graph

Edge ideal of $G=(V, E) \quad I(G)=\left\{x_{i} x_{j} \mid i j \in E\right\}$

Independent complex of $G=(V, E)$
$\operatorname{ind}(G):=\{A \subset V \mid V \in \mathcal{I}(G)\}$

$$
\star \mathrm{I}_{i n d(G)}=I(G)
$$

Clique complex of $G=(V, E) \quad \Delta_{c}(G)=\{A \subset V \mid A \in \mathcal{C}(G)\}$

$$
\star \mathrm{I}_{\Delta_{c}\left(G^{c}\right)}=I(G)
$$

Graded betti numbers and edge ideal

Hochster's formula in terms of Garphs

$$
\beta_{i, j}(I(G))=\sum_{S \subset V,|S|=j} \operatorname{dim}_{\mathbb{K}} \tilde{H}_{j-i-2}\left(\Delta_{C}\left(G_{S}^{c}\right), \mathbb{K}\right)
$$

Graded betti numbers and edge ideal
\star Computing $\beta_{2,5}(I(G))$
By Hochster's formula we must have $\operatorname{dim}_{\mathbb{K}} \tilde{H}_{1}\left(\Delta_{C}\left(G_{S}^{c}\right), \mathbb{K}\right) \neq 0$ for subgraphs of G with 5 vertices and the following subgaraphs are the only subgraphs of G that satisfies these conditions.

Clique complexe of complement of each of these subgraphs is:

$$
\beta_{2,5}(I(G))=2 h_{1}(G)+h_{2}+\cdots+h_{6}(G)
$$

Graded betti numbers and edge ideal

$$
\begin{aligned}
I(G)= & \left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{7}, x_{1} x_{8}, x_{1} x_{10}, x_{2} x_{3}, x_{2} x_{8}\right. \\
& x_{2} x_{9}, x_{2} x_{12}, x_{3} x_{7}, x_{3} x_{9}, x_{3} x_{11}, x_{4} x_{5}, x_{4} x_{6} \\
& x_{4} x_{8}, x_{4} x_{11}, x_{5} x_{6}, x_{5} x_{7}, x_{5} x_{12}, x_{6} x_{9}, x_{6} x_{10} \\
& x_{7} x_{10}, x_{7} x_{11}, x_{7} x_{12}, x_{8} x_{10}, x_{8} x_{11}, x_{8} x_{12} \\
& \left.x_{9} x_{10}, x_{9} x_{11}, x_{9} x_{12}, x_{10} x_{11}, x_{10} x_{12}, x_{11} x_{12}\right)
\end{aligned}
$$

Char $\mathbb{K}=2 \quad \Longrightarrow \quad \beta_{8,11}(I(G))=1$
Char $\mathbb{K}=0 \quad \Longrightarrow \quad \beta_{8,11}(I(G))=0$

Graded betti numbers and edge ideal

Theorem: If $\beta_{i, j}(I(G)) \neq 0 \quad \Longrightarrow \quad i+2 \leq j \leq 2(i+1)$

Theorem: $\beta_{i, i+2}(I(G))=\sum_{S \subset V,|S|=i+2}\left(\sharp \operatorname{comp}\left(G_{S}^{c}\right)-1\right)$

$$
\beta_{i, 2(i+1)}(\mathcal{I}(G))=\left|\left\{\begin{array}{l|l}
H & \begin{array}{l}
H \text { is a induced subgraph of } G \\
\text { consisting of } i+1 \text { disjoint edges }
\end{array}
\end{array}\right\}\right|
$$

Linear strand of $M: \quad l=\max \left\{i \quad \mid \quad \beta_{i, i+d}(M) \neq 0\right\}$
Theorem: G has no minimal 4-cycles

$$
\beta_{i, i+2}(I(G))=\sum_{v \in V}\binom{\text { degv }}{i+1}-\mathcal{K}_{i+2}(G)
$$

Graded betti numbers and edge ideal

Corollary: G is a forest. Then

$$
\beta_{0,2}(I(G))=\left|E_{G}\right| \quad \text { and } \quad \beta_{i, i+2}(I(G))=\sum_{v \in V}\binom{\text { degv }}{i+1}
$$

Example:

Thm: $\forall G ; \quad \beta_{2,4}(I(G))=\sum_{v \in V}\binom{$ degv }{3}$-\mathcal{K}_{4}(G)+\mathcal{K}_{2,2}(G)$
$\beta_{3,5}(I(G))=\sum_{v \in V}\binom{$ degv }{4}$-\mathcal{K}_{5}(G)+\mathcal{K}_{2,3}(G)+W_{4}(G)+d(G)$

Graded betti numbers and edge ideal

Example: $\beta_{2, j}(I(G))$
$\left\{\begin{array}{l}\beta_{2,4}(I(G))=\sum_{v \in V}\binom{\text { degv }}{3}-\mathcal{K}_{4}(G)+\mathcal{K}_{2,2}(G) \\ \beta_{2,5}(I(G))=2 h_{1}+h_{2}+\cdots+h_{6} \\ \beta_{2,6}(I(G))=\left|\left\{\begin{array}{l}H \left\lvert\, \begin{array}{l}H \text { i a induced subgrap of } G \\ \text { consisting of 3 disjoint edges }\end{array}\right.\end{array}\right\}\right|\end{array}\right.$

Theorem:

$$
\beta_{i, i+2}(I(G)) \geq \sum_{v \in V}\binom{d e g v}{i+1}-\mathcal{K}_{i+2}(G)+\mathcal{K}_{2, i}(G)+\cdots+\mathcal{K}_{\left\lfloor\frac{i+2}{2}\right],,\left[\frac{i+2}{2}\right\rceil}(G)
$$

Graded betti numbers and edge ideal

Theorem:

$$
\begin{aligned}
& \beta_{i, i+2}(I(G)) \geq \sum_{v \in V}\binom{d e g v}{i+1}-\mathcal{K}_{i+2}+\sum_{\substack{i_{1}, i_{2} \geq 2 \\
i_{1}+i_{2}=i+2}} \mathcal{K}_{i_{1}, i_{2}} \\
&+2 \sum_{\substack{i_{1}, i_{2}, i_{3} \geq 2 \\
i_{1}+i_{2}+i_{3}=i+2}} \mathcal{K}_{i_{1}, i_{2}, i_{3}}+\sum_{\substack{i_{1}, i_{2} \geq 2 \\
i_{1}+i_{2}=i_{1}}} \mathcal{K}_{i_{1}, i_{2}, 1} \\
& \vdots \\
&+(t-1) \sum_{\substack{i_{1}, \ldots, i_{2} \geq 2 \\
i_{1}+\cdots+i_{t}=i+2}} \mathcal{K}_{i_{1}, \ldots, i_{t}}+\cdots+\sum_{\substack{i_{1}, i_{2} \geq 2 \\
i_{1}+i_{2}=i-t}} \mathcal{K}_{i_{1}, i_{2}, 1, \ldots, 1}
\end{aligned}
$$

Graded betti numbers and edge ideal

Theorem: (Fröberg, 1990) $I(G)$ has linear resolution $\Longleftrightarrow G^{c}$ is chordal.

$$
\star \beta_{i, i+2}\left(I\left(K_{a, b}\right)\right)=\binom{a+b}{i+2}-\binom{a}{i+2}-\binom{b}{i+2}
$$

$\star \beta_{i, i+2}\left(I\left(K_{d_{1}, \cdots, d_{t}}\right)\right)=\sum_{l=2}^{t}(l-1) \sum_{\alpha_{1}+\cdots+\alpha_{l} i+2} j_{j_{1}<\cdots<j_{l}} \alpha_{1}, \cdots, \alpha_{l} \geq 1,\binom{n_{j_{1}}}{\alpha_{1}} \cdots\binom{n_{j_{l}}}{\alpha_{l}}$

Simplicial Trees

Definition: A facet $F \in \mathcal{F}(\Delta)$ is said to be a leaf of Δ if either F is the only facet of Δ, or there exists a facet $G \in \mathcal{F}(\Delta)$ with $G \neq F$, such that $H \cap F \subset G \cap F$ for all $H \in \mathcal{F}(\Delta)$ with $H \neq F$. G called a branch of F.

Definition: Δ is called a simplicial tree if every subcomplex of Δ has a leaf.

Exapmle:

Simplicial Trees

Definition: A quasi tree is a simplicial complex such that there exists a labelling F_{1}, \ldots, F_{q} of the facets of Δ, called a leaf order, such that for each $1<i \leq q$ the facet F_{i} is a leaf of the subcomplex $\left\langle F_{1}, \ldots, F_{i}\right\rangle$.

Theorem: If Δ be a simplicial quasi-tree $\Longrightarrow I_{\Delta}$ has a linear resolution.

Theorem: If Δ be a simplicial quasi-tree on $[n]$. Then
$\beta_{i, j}\left(I_{\Delta}\right)=\left\{\begin{array}{cc}\sum_{A \subseteq[n],|A|=j} \sharp\left(\operatorname{comp} \Delta_{A}-1\right) & j=i+2 \\ 0 & j \neq i+2\end{array}\right.$

Splittable monomial ideals

- Splittable monomial ideals
- Splitting edges
- Splitting vertices
- Splitting facets

Splittable monomial ideals

Definition: I: monomial ideal is splittable when we have: $I=J+K$, such that
(1) $\quad \mathcal{G}(I)$ is the disjoint union of $\mathcal{G}(J)$ and $\mathcal{G}(K)$
(2) there is a splitting function $\mathcal{G}(J \cap k) \longrightarrow \mathcal{G}(J) \times \mathcal{G}(K)$

$$
w \longmapsto(\varphi(w), \psi(w))
$$

satisfying
(a) $\quad \forall w \in \mathcal{G}(J \cap K), w=\operatorname{lcm}(\varphi(w), \psi(w))$.
(b) for every subset $S \subset \mathcal{G}(J \cap K)$,
both $\operatorname{lcm\varphi }(S)$ and $\operatorname{lcm\psi }(S)$ strictly divide $\operatorname{lcm}(S)$
Then $I=J+K$ is a splitting of I.

Splittable monomial ideals

Theorem(Eliahou, Kervaire, 1990 - Fatabbi, 2001): If $I=J+K$ be a splitting of I, then

$$
\beta_{i, j}(I)=\beta_{i, j}(J)+\beta_{i, j}(K)+\beta_{i-1, j}(J \cap K)
$$

Splitting edges

Theorem: An edge $e=u v$ is a splitting edge of $G \Longleftrightarrow$

$$
N(u) \subseteq(N(v) \cup\{v\}) \text { or } N(v) \subseteq(N(u) \cup\{u\}) \text {. }
$$

Example:

$x_{1} x_{2}$ is a splitting edge of G but $x_{2} x_{4}$ is not.

Splitting edges

Theorem: $e=u v$: splitting edge of G, and set $H=G \backslash N(u) \cup N(v)$ and $n=|N(u) \cup N(v)|-2$. Then \forall $i \geq 1$ and $j \geq 0$

$$
\beta_{i, j}(I(G))=\beta_{i, j}(I(G \backslash e))+\sum_{l=0}^{i}\binom{n}{l} \beta_{i-1-l, j-2-l}(I(H))
$$

Corollary: $e=u v$ be a leaf of a forest G, if degv $=n$ and $N(v)=\left\{u, v_{1}, \cdots, v_{n-1}\right\}$. Then $\forall i \geq 1$ and $j \geq 0$

$$
\beta_{i, j}(I(G))=\beta_{i, j}(I(T))+\sum_{l=0}^{i}\binom{n-1}{l} \beta_{i-1-l, j-2-l}(I(H))
$$

Where $T=G \backslash e=G \backslash\{u\}$ and $H=G \backslash\left\{u, v, v_{1}, \cdots, v_{n-1}\right\}$.

Splitting edges

Corollary: $e=u v$ be asplitting edge of G, and

$$
H=G \backslash(N(u) \cup N(v)) \text {. Let } n=|N(u) \cup N(v)|-2 \text {. Then }
$$

$$
1 \operatorname{Reg}(I(G))=\max \{2, \operatorname{Reg}(I(G \backslash e)), \operatorname{Reg}(I(H))+1\}
$$

$$
2 P d(I(G))=\max \{P d(I(G \backslash e)), P d(I(H))+n+1\}
$$

Splitting edges

Example:

Consider the minimal free resolution of $I(G)$:

$$
0 \longrightarrow S^{2}(-4) \longrightarrow S^{6}(-3) \longrightarrow S^{5}(-2) \longrightarrow I(G) \longrightarrow 0
$$

And the minimal free resolution of $I(G \backslash e))$ is:

$$
0 \rightarrow S(-6) \rightarrow S^{4}(-5) \rightarrow S^{2}(-3) \oplus S^{4}(-4) \rightarrow S^{4}(-4) \rightarrow I(G \backslash e) \rightarrow 0
$$

Then we see that: $\operatorname{Pd}(I(G \backslash e))=3>2=\operatorname{Pd}(I(G))$ and $\operatorname{Reg}(I(G \backslash e)=3>2=\operatorname{Reg}(I(G))$.

Splitting vertices

Definition: A vertex $v \in V_{G}$ is a splitting vertex if $\operatorname{deg} v=d>0$ and $G \backslash\{v\}$ is not the graph of isolated vertices.

Theorem: v is a splitting vertex of G and $N(v)=\left\{v_{1}, \cdots, v_{d}\right\}$. If $J=\left(v v_{1}, \cdots, v v_{d}\right)$ and $K=I(G \backslash\{v\})$. Then $I(G)=J+K$ is a splitting of $I(G)$.

Corollary: Let $G_{i}:=G \backslash\left(N(v) \cup N\left(v_{i}\right)\right) i=1, \cdots, d$ and $G_{(v)}:=G_{\left\{v_{1}, \ldots, v_{d}\right\}} \cup\left\{e \in E \mid e\right.$ incident to v_{1}, \ldots, v_{d} but not $\left.v\right\}$. Then

$$
J \cap K=v I\left(G_{(v)}\right)+v v_{1} I\left(G_{1}\right)+\cdots+v v_{d} I\left(G_{d}\right)
$$

Splitting vertices

Corollary: If $v \in V$ be a splitting vertex of degree d in G. Then

$$
\begin{aligned}
& \text { (i) } \operatorname{Reg}(I(G)) \geq \max \{2, \operatorname{Reg}(I(G \backslash\{v\})\} \\
& \text { (ii) } \operatorname{Pd}(I(G)) \geq \max \{d-1, \operatorname{Pd}(I(G \backslash\{v\}))\}
\end{aligned}
$$

Theorem: Suppose that v is a splitting vertex of G with $N(v)=\left\{v_{1}, \cdots, v_{d}\right\}$. Then

$$
\beta_{i, j}(I(G))=\beta_{i, j}\left(I\left(K_{1, d}\right)\right)+\beta_{i, j}(I(G \backslash\{v\}))+\beta_{i-1, j}(L)
$$

Where $L=v I\left(G_{(v)}\right)+v v_{1} I\left(G_{1}\right)+\cdots+v v_{d} I\left(G_{d}\right)$

Splitting vertices

Theorem: v is a splitting vertex of G. Then $\forall i \geq 0$,

$$
\beta_{i, i+2}(I(G))=\beta_{i, i+2}\left(I\left(K_{1, d}\right)\right)+\beta_{i, i+2}(I(G \backslash\{v\}))+\beta_{i-1, i+1}\left(I\left(G_{(v)}\right)\right) .
$$

Splitting facets

Definition: Δ is a simplicial complex and F is a facet of Δ. The connected component of F in $\Delta, \operatorname{conn}_{\Delta}(F)$ is the connected component of Δ containing F.

If $\operatorname{conn}_{\Delta}(F) \backslash F=<G_{1}, \cdots, G_{p}>$, then reduced connected component of F in $\Delta, \overline{\operatorname{conn}}_{\Delta}(F)$, is the simplicial complex whose facets are given by $G_{1} \backslash F, \cdots, G_{p} \backslash F$.
where if there exist G_{i} and G_{j} such that; $0 \neq G_{i} \backslash F \subseteq G_{j} \backslash F$, then we shall disregard the bigger facet $G_{j} \backslash F$ in $\overline{\operatorname{conn}}_{\Delta}(F)$.

Splitting facets

Example: Consider the simplicial complex Δ with
$\mathcal{F}(\Delta)=\{\{1,2,3\},\{1,3,4\},\{1,4,5\},\{1,5,6\}\}$ and let $F=\{1,5,6\}$. Then

$$
\operatorname{conn}_{\Delta}(F)=\Delta \text { and } \overline{\operatorname{conn}}_{\Delta}(F)=\langle\{2,3\},\{4\}\rangle .
$$

Consider $\{1,3,4\} \backslash F=\{3,4\}$ contains $\{4\}=\{1,4,5\} \backslash F$ so we disregard the bigger set in obtaining $\overline{\operatorname{conn}}_{\Delta}(F)$.

Splitting facets

- F is a facet of a simplicial complex $\Delta, \Delta^{\prime}=\Delta \backslash F$: the simplicial complex obtained by removing F from the facet set of Δ. Let $J=\left(x_{F}\right) \quad, \quad K=I\left(\Delta^{\prime}\right)$.

Note that $\mathcal{G}(I(\Delta))$ is the disjoint union of $\mathcal{G}(J)$ and $\mathcal{G}(K)$.

Theorem: F splitting facet of Δ, then $\forall i, j \geq 0$
$\beta_{i, j}(I(\Delta))=\beta_{i, j}\left(I\left(\Delta^{\prime}\right)\right)+\sum_{l_{1}=0}^{i} \sum_{l_{2}=0}^{j-|F|} \beta_{l_{1}-1, l_{2}}\left(I\left(\overline{\operatorname{conn}}_{\Delta}(F)\right)\right) \beta_{i-l_{1}-1, j-|F|-l_{2}}(I(\Omega))$

Where $\Omega=\Delta \backslash \operatorname{conn}_{\Delta}(F)$

Splitting facets

Theorem: If F is a leaf of Δ, then F is a splitting facet of Δ.

Theorem: Let F be a facet of a forest Δ. Then $\overline{\operatorname{conn}}_{\Delta}(F)$ is a forest.

Theorem: Let F be a leaf of a simplicial forest Δ, and let $\Delta^{\prime}=\Delta \backslash F$ and $\Omega=\Delta \backslash \operatorname{conn}_{\Delta}(F)$. Then Δ^{\prime}, Ω, and $\overline{\operatorname{conn}}_{\Delta}(F)$ are also simplicial forests and for all $i \geq 1$ and $j \geq 0$
$\beta_{i, j}(I(\Delta))=\beta_{i, j}\left(I\left(\Delta^{\prime}\right)\right)+\sum_{l_{1}=0}^{i} \sum_{l_{2}=0}^{j-|F|} \beta_{l_{1}-1, l_{2}}(I(\overline{\text { conn }} \Delta(F))) \beta_{i-l_{1}-1, j-|F|-l_{2}}(I(\Omega))$

Splitting facets

For a face G of dimension $d-2$ of a pure $(d-1)$-dimensional simplicial complex Δ we define:
$\operatorname{deg}_{\Delta}(G):=|\{F \in \mathcal{F}(\Delta) \mid G \subseteq F\}|$
$\mathcal{A}(\Delta)$: the set of $(d-2)$-dimensional faces of Δ.

Theorem: Let Δ be a pure ($d-1$)-dimensional forest. Then

$$
\beta_{i, i+d}(I(\Delta))= \begin{cases}|\mathcal{F}(\Delta)| & \text { if } i=0 \\ \sum_{G \in \mathcal{A}(\Delta)}\binom{\operatorname{deg}_{\Delta}(G)}{i+1} & \text { if } i \geq 1\end{cases}
$$

Thank you

