

Nasrin Altafi Razlighi

Results via reduced simplicial homology

• Graded betti numbers and edge ideal

• Simplicial Trees

Hochster's formula

Hochster's formula:

$$\beta_{i,j}(I_{\Delta}) = \sum_{|W|=j,W \subset [n]} dim_{\mathbb{K}} \tilde{H}_{j-i-2}(\Delta_W; \mathbb{K})$$

Simplicial complexes related to a simple graph

Edge ideal of
$$G = (V, E)$$
 $I(G) = \{x_i x_j \mid ij \in E\}$

Independent complex of G = (V, E)

$$ind(G) \coloneqq \{A \subset V | V \in \mathcal{I}(G)\}$$

$$\star I_{ind(G)} = I(G)$$

Clique complex of G = (V, E) $\Delta_c(G) = \{A \subset V | A \in \mathcal{C}(G)\}$

$$\star \mathrm{I}_{\Delta_c(G^c)} = I(G)$$

Hochster's formula in terms of Garphs

$$\beta_{i,j}(I(G)) = \sum_{S \subset V, |S| = j} dim_{\mathbb{K}} \tilde{H}_{j-i-2}(\Delta_C(G_S^c), \mathbb{K})$$

*Computing $\beta_{2,5}(I(G))$

By Hochster's formula we must have $dim_{\mathbb{K}}\tilde{H}_1(\Delta_C(G_S^c),\mathbb{K}) \neq 0$

for subgraphs of G with 5 vertices and the following subgaraphs are the only subgraphs of G that satisfies these conditions.

Clique complexe of complement of each of these subgraphs is:

$$\beta_{2,5}(I(G)) = 2h_1(G) + h_2 + \dots + h_6(G)$$

$$I(G) = (x_1x_2, x_1x_3, x_1x_7, x_1x_8, x_1x_{10}, x_2x_3, x_2x_8,$$

$$x_2x_9, x_2x_{12}, x_3x_7, x_3x_9, x_3x_{11}, x_4x_5, x_4x_6,$$

$$x_4x_8, x_4x_{11}, x_5x_6, x_5x_7, x_5x_{12}, x_6x_9, x_6x_{10},$$

$$x_7x_{10}, x_7x_{11}, x_7x_{12}, x_8x_{10}, x_8x_{11}, x_8x_{12},$$

$$x_9x_{10}, x_9x_{11}, x_9x_{12}, x_{10}x_{11}, x_{10}x_{12}, x_{11}x_{12})$$

$$Char\mathbb{K} = 2 \implies \beta_{8,11}(I(G)) = 1$$

$$Char\mathbb{K} = 0 \implies \beta_{8,11}(I(G)) = 0$$

Theorem: If
$$\beta_{i,j}(I(G)) \neq 0 \implies i+2 \leq j \leq 2(i+1)$$

Theorem:
$$\beta_{i,i+2}(I(G)) = \sum_{S \subset V, |S|=i+2} (\# comp(G_S^c) - 1)$$

$$\beta_{i,2(i+1)}(\mathcal{I}(G)) = \left| \left\{ H \middle| \begin{array}{c} H \text{ is a induced subgraph of } G \\ consisting \text{ of } i+1 \text{ disjoint edges} \end{array} \right\} \right|$$

Linear strand of
$$M$$
: $l = max\{i \mid \beta_{i,i+d}(M) \neq 0\}$

Theorem: G has no minimal 4-cycles

$$\beta_{i,i+2}(I(G)) = \sum_{v \in V} {degv \choose i+1} - \mathcal{K}_{i+2}(G)$$

Corollary: G is a forest. Then

$$\beta_{0,2}(I(G)) = |E_G|$$
 and $\beta_{i,i+2}(I(G)) = \sum_{v \in V} {\deg v \choose i+1}$

Example:

$$\beta_{1,j}(I(G)) = \begin{cases} \sum_{v \in V} {degv \choose 2} - \mathcal{K}_3(G) & \text{if } j = 3\\ \mathcal{C}_4(G^c) & \text{if } j = 4\\ 0 & \text{if } j \neq 3, 4 \end{cases}$$

Thm:
$$\forall G$$
; $\beta_{2,4}(I(G)) = \sum_{v \in V} {degv \choose 3} - \mathcal{K}_4(G) + \mathcal{K}_{2,2}(G)$

$$\beta_{3,5}(I(G)) = \sum_{v \in V} {degv \choose 4} - \mathcal{K}_5(G) + \mathcal{K}_{2,3}(G) + W_4(G) + d(G)$$

Example: $\beta_{2,j}(I(G))$

$$\begin{cases} \beta_{2,4}(I(G)) = \sum_{v \in V} {degv \choose 3} - \mathcal{K}_4(G) + \mathcal{K}_{2,2}(G) \\ \beta_{2,5}(I(G)) = 2h_1 + h_2 + \dots + h_6 \\ \beta_{2,6}(I(G)) = \left| \begin{cases} H & \text{H is a induced subgraph of } G \\ consisting \text{ of } 3 & \text{disjoint edges} \end{cases} \right| \end{cases}$$

Theorem:

$$\beta_{i,i+2}(I(G)) \ge \sum_{v \in V} {degv \choose i+1} - \mathcal{K}_{i+2}(G) + \mathcal{K}_{2,i}(G) + \dots + \mathcal{K}_{\lfloor \frac{i+2}{2} \rfloor, \lceil \frac{i+2}{2} \rceil}(G)$$

Theorem:

$$\beta_{i,i+2}(I(G)) \ge \sum_{v \in V} \binom{degv}{i+1} - \mathcal{K}_{i+2} + \sum_{\substack{i_1,i_2 \ge 2\\i_1+i_2=i+2}} \mathcal{K}_{i_1,i_2}$$

$$+ 2 \sum_{\substack{i_1,i_2,i_3 \ge 2\\i_1+i_2+i_3=i+2}} \mathcal{K}_{i_1,i_2,i_3} + \sum_{\substack{i_1,i_2 \ge 2\\i_1+i_2=i+1}} \mathcal{K}_{i_1,i_2,1}$$

$$\vdots$$

$$+ (t-1) \sum_{\substack{i_1,\dots,i_t \ge 2\\i_1+\dots+i_t=i+2}} \mathcal{K}_{i_1,\dots,i_t} + \dots + \sum_{\substack{i_1,i_2 \ge 2\\i_1+i_2=i-t}} \mathcal{K}_{i_1,i_2,1,\dots,1}$$

$$\vdots$$

Theorem: (Fröberg, 1990) I(G) has linear resolution $\iff G^c$ is chordal.

$$\star \beta_{i,i+2}(I(K_{a,b})) = {a+b \choose i+2} - {a \choose i+2} - {b \choose i+2}$$

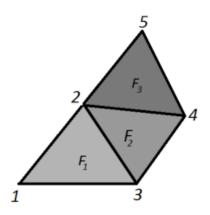
$$\star \beta_{i,i+2}(I(K_{d_1,\cdots,d_t})) = \sum_{l=2}^t (l-1) \sum_{\alpha_1+\cdots+\alpha_l=i+2} \sum_{j_1<\cdots< j_l} \alpha_{1,\cdots,\alpha_l\geq 1} \binom{n_{j_1}}{\alpha_1} \cdots \binom{n_{j_l}}{\alpha_l}$$

Simplicial Trees

Definition: A facet $F \in \mathcal{F}(\Delta)$ is said to be a **leaf** of Δ if either F is the only facet of Δ , or there exists a facet $G \in \mathcal{F}(\Delta)$ with $G \neq F$, such that $H \cap F \subset G \cap F$ for all $H \in \mathcal{F}(\Delta)$ with $H \neq F$. G called a **branch** of F.

Definition: Δ is called a **simplicial tree** if every subcomplex of Δ has a leaf.

Exapmle:



Simplicial Trees

Definition: A **quasi tree** is a simplicial complex such that there exists a labelling F_1, \ldots, F_q of the facets of Δ , called a **leaf order**, such that for each $1 < i \le q$ the facet F_i is a leaf of the subcomplex $< F_1, \ldots, F_i >$.

Theorem: If Δ be a simplicial quasi-tree $\Longrightarrow I_{\Delta}$ has a linear resolution.

Theorem: If Δ be a simplicial quasi-tree on [n]. Then

$$\beta_{i,j}(I_{\Delta}) = \begin{cases} \sum_{A \subseteq [n], |A| = j} \sharp (comp\Delta_A - 1) & j = i + 2\\ 0 & j \neq i + 2 \end{cases}$$

Splittable monomial ideals

- Splittable monomial ideals
- Splitting edges
- Splitting vertices
- Splitting facets

Splittable monomial ideals

Definition: I: monomial ideal is splittable when we have: I = J + K, such that

- (1) $\mathcal{G}(I)$ is the disjoint union of $\mathcal{G}(J)$ and $\mathcal{G}(K)$
- (2) there is a splitting function $\mathcal{G}(J \cap k) \longrightarrow \mathcal{G}(J) \times \mathcal{G}(K)$ $w \longmapsto (\varphi(w), \psi(w))$

satisfying

- (a) $\forall w \in \mathcal{G}(J \cap K), w = lcm(\varphi(w), \psi(w)).$
- (b) for every subset $S \subset \mathcal{G}(J \cap K)$, both $lcm\varphi(S)$ and $lcm\psi(S)$ strictly divide lcm(S)

Then I = J + K is a splitting of I.

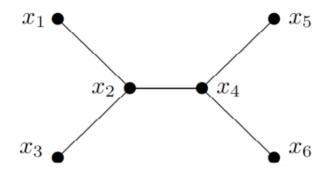
Splittable monomial ideals

Theorem(Eliahou, Kervaire, 1990 - Fatabbi, 2001): If I = J + K be a splitting of I, then

$$\beta_{i,j}(I) = \beta_{i,j}(J) + \beta_{i,j}(K) + \beta_{i-1,j}(J \cap K)$$

Theorem: An edge e = uv is a splitting edge of $G \iff$ $N(u) \subseteq (N(v) \cup \{v\})$ or $N(v) \subseteq (N(u) \cup \{u\})$.

Example:



 x_1x_2 is a splitting edge of G but x_2x_4 is not.

Theorem: e = uv: splitting edge of G, and set $H = G \setminus N(u) \cup N(v)$ and $n = |N(u) \cup N(v)| - 2$. Then $\forall i \geq 1$ and $j \geq 0$

$$\beta_{i,j}(I(G)) = \beta_{i,j}(I(G \setminus e)) + \sum_{l=0}^{i} \binom{n}{l} \beta_{i-1-l,j-2-l}(I(H))$$

Corollary: e = uv be a leaf of a forest G, if degv = n and $N(v) = \{u, v_1, \dots, v_{n-1}\}$. Then $\forall i \geq 1$ and $j \geq 0$

$$\beta_{i,j}(I(G)) = \beta_{i,j}(I(T)) + \sum_{l=0}^{i} {n-1 \choose l} \beta_{i-1-l,j-2-l}(I(H))$$

Where $T = G \setminus e = G \setminus \{u\}$ and $H = G \setminus \{u, v, v_1, \dots, v_{n-1}\}$.

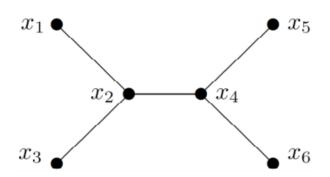
Corollary: e = uv be asplitting edge of G, and

$$H = G \setminus (N(u) \cup N(v))$$
. Let $n = |N(u) \cup N(v)| - 2$. Then

$$1 \operatorname{Reg}(I(G)) = \max\{2, \operatorname{Reg}(I(G \setminus e)), \operatorname{Reg}(I(H)) + 1\}$$

$$2 Pd(I(G)) = max\{Pd(I(G \setminus e)), Pd(I(H)) + n + 1\}$$

Example:



Consider the minimal free resolution of I(G):

$$0 \longrightarrow S^2(-4) \longrightarrow S^6(-3) \longrightarrow S^5(-2) \longrightarrow I(G) \longrightarrow 0$$

And the minimal free resolution of $I(G \setminus e)$ is:

$$0 \to S(-6) \to S^4(-5) \to S^2(-3) \oplus S^4(-4) \to S^4(-4) \to I(G \setminus e) \to 0$$

Then we see that: $Pd(I(G \setminus e)) = 3 > 2 = Pd(I(G))$ and $Reg(I(G \setminus e) = 3 > 2 = Reg(I(G))$.

Splitting vertices

Definition: A vertex $v \in V_G$ is a **splitting vertex** if degv = d > 0 and $G \setminus \{v\}$ is not the graph of isolated vertices.

Theorem: v is a splitting vertex of G and $N(v) = \{v_1, \dots, v_d\}$. If $J = (vv_1, \dots, vv_d)$ and $K = I(G \setminus \{v\})$. Then I(G) = J + K is a splitting of I(G).

Corollary: Let $G_i := G \setminus (N(v) \cup N(v_i))$ $i = 1, \dots, d$ and $G_{(v)} := G_{\{v_1,\dots,v_d\}} \cup \{e \in E \mid e \text{ incident to } v_1,\dots,v_d \text{ but not } v\}.$ Then

$$J \cap K = vI(G_{(v)}) + vv_1I(G_1) + \dots + vv_dI(G_d)$$

Splitting vertices

Corollary: If $v \in V$ be a splitting vertex of degree d in G. Then

(i)
$$Reg(I(G)) \ge max\{2, Reg(I(G \setminus \{v\}))\}$$

(ii)
$$Pd(I(G)) \ge max\{d-1, Pd(I(G \setminus \{v\}))\}$$

Theorem: Suppose that v is a splitting vertex of G with $N(v) = \{v_1, \dots, v_d\}$. Then

$$\beta_{i,j}(I(G)) = \beta_{i,j}(I(K_{1,d})) + \beta_{i,j}(I(G \setminus \{v\})) + \beta_{i-1,j}(L)$$

Where
$$L = vI(G_{(v)}) + vv_1I(G_1) + \cdots + vv_dI(G_d)$$

Splitting vertices

Theorem: v is a splitting vertex of G. Then $\forall i \geq 0$,

$$\beta_{i,i+2}(I(G)) = \beta_{i,i+2}(I(K_{1,d})) + \beta_{i,i+2}(I(G \setminus \{v\})) + \beta_{i-1,i+1}(I(G_{(v)})).$$

Definition: Δ is a simplicial complex and F is a facet of Δ . The **connected component** of F in Δ , $conn_{\Delta}(F)$ is the connected component of Δ containing F.

If $conn_{\Delta}(F) \setminus F = \langle G_1, \dots, G_p \rangle$, then **reduced connected component** of F in Δ , $\overline{conn}_{\Delta}(F)$, is the simplicial complex whose facets are given by $G_1 \setminus F, \dots, G_p \setminus F$.

where if there exist G_i and G_j such that; $0 \neq G_i \setminus F \subseteq G_j \setminus F$, then we shall disregard the bigger facet $G_j \setminus F$ in $\overline{conn}_{\Delta}(F)$.

Example: Consider the simplicial complex Δ with

$$\mathcal{F}(\Delta) = \{\{1, 2, 3\}, \{1, 3, 4\}, \{1, 4, 5\}, \{1, 5, 6\}\} \text{ and let } F = \{1, 5, 6\}.$$
 Then

$$conn_{\Delta}(F) = \Delta$$
 and $\overline{conn}_{\Delta}(F) = \langle \{2,3\}, \{4\} \rangle$.

Consider $\{1,3,4\} \setminus F = \{3,4\}$ contains $\{4\} = \{1,4,5\} \setminus F$ so we disregard the bigger set in obtaining $\overline{conn}_{\Delta}(F)$.

- F is a facet of a simplicial complex Δ , $\Delta' = \Delta \setminus F$: the simplicial complex obtained by removing F from the facet set of Δ . Let $J = (x_F)$, $K = I(\Delta')$.

Note that $\mathcal{G}(I(\Delta))$ is the disjoint union of $\mathcal{G}(J)$ and $\mathcal{G}(K)$.

Theorem: F splitting facet of Δ , then $\forall i, j \geq 0$

$$\beta_{i,j}(I(\Delta)) = \beta_{i,j}(I(\Delta')) + \sum_{l_1=0}^{i} \sum_{l_2=0}^{j-|F|} \beta_{l_1-1,l_2}(I(\overline{conn}_{\Delta}(F))) \beta_{i-l_1-1,j-|F|-l_2}(I(\Omega))$$

Where $\Omega = \Delta \setminus conn_{\Delta}(F)$

Theorem: If F is a leaf of Δ , then F is a splitting facet of Δ .

Theorem: Let F be a facet of a forest Δ . Then $\overline{conn}_{\Delta}(F)$ is a forest.

Theorem: Let F be a leaf of a simplicial forest Δ , and let $\Delta' = \Delta \setminus F$ and $\Omega = \Delta \setminus conn_{\Delta}(F)$. Then Δ' , Ω , and $\overline{conn_{\Delta}(F)}$ are also simplicial forests and for all $i \geq 1$ and $j \geq 0$

$$\beta_{i,j}(I(\Delta)) = \beta_{i,j}(I(\Delta')) + \sum_{l_1=0}^{i} \sum_{l_2=0}^{j-|F|} \beta_{l_1-1,l_2}(I(\overline{conn}\Delta(F))) \beta_{i-l_1-1,j-|F|-l_2}(I(\Omega))$$

For a face G of dimension d-2 of a pure (d-1)-dimensional simplicial complex Δ we define:

$$deg_{\Delta}(G) \coloneqq |\{F \in \mathcal{F}(\Delta) \mid G \subseteq F\}|$$

 $\mathcal{A}(\Delta)$: the set of (d-2)-dimensional faces of Δ .

Theorem: Let Δ be a pure (d-1)-dimensional forest. Then

$$\beta_{i,i+d}(I(\Delta)) = \begin{cases} |\mathcal{F}(\Delta)| & \text{if } i = 0\\ \sum_{G \in \mathcal{A}(\Delta)} {\deg_{\Delta}(G) \choose i+1} & \text{if } i \geq 1 \end{cases}$$

Thank you