Path ideals of graphs

Sara Saeedi Madani

Amirkabir University of Technology

August 2013

臣

Let $R = k[x_1, \ldots, x_n]$, where k is a field.

For a simplicial complex Δ with vertex set $\{x_1, \ldots, x_n\}$, the Stanley-Reisner ideal of Δ is defined as:

 $I_{\Delta} = (\prod_{x \in F} x : F \notin \Delta).$

・回 と く ヨ と く ヨ と

Let $R = k[x_1, \ldots, x_n]$, where k is a field.

For a simplicial complex Δ with vertex set $\{x_1, \ldots, x_n\}$, the Stanley-Reisner ideal of Δ is defined as:

$$I_{\Delta} = (\prod_{x \in F} x : F \notin \Delta).$$

白 ト イヨ ト イヨト

The facet ideal of Δ is

$$I(\Delta) = (\prod_{x \in F} x : F \text{ is a facet of } \Delta).$$

・ロ・ ・ 日・ ・ 田・ ・ 田・

Let V be a finite set and $E = \{e_1, \ldots, e_m\}$ a finite collection of distinct non-empty subsets of V. Then the pair H = (V, E) is called a hypergraph.

白 ト イヨ ト イヨト

A hypergraph H is said to be simple, if there is no containment between its edges.

A hypergraph *H* is said to be d-uniform if $|e_i| = d$, for every edge $e_i \in E$.

白 ト イヨ ト イヨト

The edge ideal of a hypergraph H is defined as

$$I(H) = (\prod_{x \in e} x : e \in H).$$

・ロト ・回ト ・ヨト ・ヨト

Let G = (V, E) be a finite simple graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set E. Associated to G is a monomial ideal

$$I(G) = (x_i x_j : \{v_i, v_j\} \in E),$$

in $k[x_1, \ldots, x_n]$, called the edge ideal of G.

個 と く ヨ と く ヨ と

Let G = (V, E) be a directed graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set E. Fix an integer $2 \le t \le n$. Associated to G is a monomial ideal

 $I_t(G) = (x_{i_1} \cdots x_{i_t} : v_{i_1}, \dots, v_{i_t} \text{ is a path of length t in } G),$ called the path ideal of G.

白 と く ヨ と く ヨ と …

Path ideals

$$I_3(G) = (x_1x_3x_6, x_1x_2x_4, x_2x_4x_7, x_1x_2x_5, x_2x_5x_8).$$

< □ > < □ > < □ > < □ > < □ > < □ >

- (Conca De Negri, 1999) The Rees algebra of the path ideal of directed trees
- (Brumatti da Silva, 2001) The Rees algebra and symmetric algebra of the path ideal of cycles
- (Restuccia Villarreal, 2001) The path ideal of complete bipartite graphs

It is known that

$$I(C_n)$$
 is unmixed $\iff n = 3, 4, 5 \text{ or } 7.$

▲□ > ▲圖 > ▲ 圖 >

- < ∃ →

Kiani - me - Terai

Let $t \ge 3$. Then $I_t(C_n)$ is unmixed if and only if n = 2t + 1 or $t \le n \le \lfloor 3t/2 \rfloor + 1$.

(4回) (4回) (4回)

A graded *R*-module *M* is called sequentially Cohen-Macaulay (over k) if there exists a finite filtration of graded *R*-modules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

such that each M_i/M_{i-1} is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

 $\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1})$

Francisco - Van Tuyl

Let $n \ge 3$. Then the following are equivalent:

```
(i) R/I(C_n) is Cohen-Macaulay.
```

(ii) $R/I(C_n)$ is sequentially Cohen-Macaulay.

(iii) n = 3 or 5.

/⊒ ► < ≣ ►

Kiani - me - Terai

Let $n \ge t \ge 2$. Then the following are equivalent:

(i) $R/I_t(C_n)$ is Cohen-Macaulay.

(ii) $R/I_t(C_n)$ is sequentially Cohen-Macaulay.

(iii) n = t or t + 1 or 2t + 1.

Path ideals of trees

<回> < 回> < 回> < 回>

臣

Francisco -Van Tuyl

If G is a tree, then G is sequentially Cohen-Macaulay.

He -Van Tuyl

Let G be a directed tree and $t \ge 2$. Then $R/I_t(G)$ is sequentially Cohen-Macaulay.

æ

∃ ⊳

A⊒ ▶ ∢ ∃

Theorem

Let I be a squarefree monomial ideal in R. Then R/I is Cohen-Macaulay if and only if R/I is sequentially Cohen-Macaulay and I is unmixed.

Haghighi - Terai - Yassemi - Zaare-Nahandi

Let I be a squarefree monomial ideal in R. Then R/I is S_r if and only if R/I is sequentially S_r and I is unmixed.

白 ト イヨ ト イヨト

A graded *R*-module *M* is called sequentially S_r (over *k*) if there exists a finite filtration of graded *R*-modules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

such that each M_i/M_{i-1} is S_r , and the Krull dimensions of the quotients are increasing:

$$\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1})$$

A finitely generated graded module M over R is said to satisfy the Serre's condition S_r if depth $M_P \ge \min(r, \dim M_P)$, for all $P \in \operatorname{Spec}(R)$.

伺 ト イヨト イヨト

Herzog - Hibi - Zheng

Let G be a chordal graph on the vertex set V. Let F_1, \ldots, F_m be the facets of $\Delta(G)$ which admit a free vertex. Then the following conditions are equivalent:

(i) G is Cohen-Macaulay.

(ii) G is unmixed.

(iii) V is the disjoint union of F_1, \ldots, F_m .

∰ ▶ € ▶

level(v) :=the length of the unique path starting at the root and ending at v minus one.

Note that by removing leaves at level strictly less than (t-1) from a tree Γ and repeating this process, one obtains a tree denoted by $C(\Gamma)$. This process is called cleaning process and the tree $C(\Gamma)$ is called the clean form of Γ . level(v) := the length of the unique path starting at the root and ending at v minus one.

Note that by removing leaves at level strictly less than (t-1) from a tree Γ and repeating this process, one obtains a tree denoted by $C(\Gamma)$. This process is called cleaning process and the tree $C(\Gamma)$ is called the clean form of Γ . Let Γ be a tree over *n* vertices and $2 \le t \le n$. Suppose that F_1, \ldots, F_m are all facets of $\Delta = \Delta_t(C(\Gamma))$ containing a leaf of $C(\Gamma)$ such that each leaf belongs to exactly one of them. If $V(\Delta)$ is the disjoint union of F_1, \ldots, F_m , then we say that Γ is t-partitioned (by F_1, \ldots, F_m).

Let Γ be a t-partitioned tree (by F_1, \ldots, F_m). We define a t-branch of Γ , as a path of length t + 1, say P, which starts at a vertex of some F_i , like x, and $P \cap F_i = \{x\}$. Then, for each $i = 1, \ldots, m$, we define degree of F_i , as

 $\text{Deg}_{\Gamma}(F_i) :=$ the number of vertices of F_i which are the first vertices of a t-branch of Γ .

We define degree of Γ , as

 $\mathrm{Deg}(\Gamma):=\max\{\mathrm{Deg}_{\Gamma}(F_i)\ :\ 1\leq i\leq m\}.$

御 と く ヨ と く

Let Γ be a t-partitioned tree (by F_1, \ldots, F_m). We define a t-branch of Γ , as a path of length t + 1, say P, which starts at a vertex of some F_i , like x, and $P \cap F_i = \{x\}$. Then, for each $i = 1, \ldots, m$, we define degree of F_i , as

 $\text{Deg}_{\Gamma}(F_i) :=$ the number of vertices of F_i which are the first vertices of a t-branch of Γ .

We define degree of Γ , as

 $\mathrm{Deg}(\Gamma) := \max\{\mathrm{Deg}_{\Gamma}(F_i) : 1 \leq i \leq m\}.$

We call a t-branch of Γ , initial if it intersects some F_i in the first vertex of F_i . Otherwise, we call it non-initial.

We define level of a t-branch P of Γ , denoted by level(P), as the level of the vertex x, where $P \cap F_i = \{x\}$ for some i = 1, ..., m.

We call a t-branch of Γ , initial if it intersects some F_i in the first vertex of F_i . Otherwise, we call it non-initial.

We define level of a t-branch *P* of Γ , denoted by level(*P*), as the level of the vertex *x*, where $P \cap F_i = \{x\}$ for some i = 1, ..., m.

- Let Γ be a t-partitioned tree over *n* vertices and $2 \le t \le n$. We say that Γ is fitting t-partitioned, if the following hold:
- (1) $Deg(\Gamma) \le 1$; and (2) $level(P) \le t - 1$, for each non-initial t-branch P of Γ .

ヨット イヨット イヨッ

Path ideals of trees

 Γ_1 is fitting 3-partitioned by $F_1 = \{v_1, v_4, v_7\}$, $F_2 = \{v_2, v_5, v_8\}$ and $F_3 = \{v_6, v_9, v_{10}\}$. We have $\text{Deg}(\Gamma_1) = 1$.

Path ideals of trees

Γ_2 is 3 – partitioned but not fitting 3 – partitioned.

≣ >

Let Γ be a tree over *n* vertices and $2 \le t \le n$. Then the following conditions are equivalent:

```
(i) I_t(\Gamma) is unmixed.
```

(ii) $R/I_t(\Gamma)$ is Cohen-Macaulay.

```
(iii) R/I_t(\Gamma) is S_r.
```

(iv) Γ is fitting t-partitioned.

Let $2 \le t \le n$. Then $R/I_t(P_n)$ is Cohen-Macaulay if and only if t = n or n/2.

- 4 回 ト - 4 回 ト - 4 回 ト

Let Γ be a tree over *n* vertices and $2 \le t \le n$. If Γ is fitting t-partitioned (by F_1, \ldots, F_m), then $pd(R/I_t(\Gamma)) = m$.

・ 回 と ・ ヨ と ・ ヨ と

2

Herzog - Hibi - Zheng

Let G be a chordal graph. Then G is Gorenstein, if and only if G is a disjoint union of edges.

Let Γ be a tree over *n* vertices, $2 \le t \le n$ and $\Delta_{n,t}$ be the Stanley-Reisner complex of $I_t(\Gamma)$. Then the following are equivalent:

(i) $R/I_t(\Gamma)$ is a complete intersection.

(ii) $R/I_t(\Gamma)$ is Gorenstein.

(iii) $\Delta_{n,t}$ is a matroid.

(iv) $C(\Gamma)$ is P_t .

∰ ▶ € ▶

Let Γ be a tree over *n* vertices, $2 \le t \le n$ and $I := I_t(\Gamma)$. Then the following are equivalent:

(i) I^m (resp. $I^{(m)}$) is Cohen-Macaulay for every $m \ge 1$.

(ii) I^m (resp. $I^{(m)}$) is Cohen-Macaulay for some $m \ge 3$.

(iii) $C(\Gamma)$ is P_t .

Thanks for your attention.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト