A SURVEY OF RESULTS AND PROBLEMS ABOUT a–COFINITE MODULES

L. Melkersson

M is \mathfrak{a} -cofinite if it has support in $V(\mathfrak{a})$ and $Ext^i(A/\mathfrak{a}, M)$ is a finite A-module for all i. E.g if N is finite the local cohomology modules $H^i_{\mathfrak{a}}(N)$ are \mathfrak{a} -cofinite for all i, in case dim $A/\mathfrak{a} \leq 1$ and (A, \mathfrak{m}) is local. The main problem is to decide whether in this case the category of \mathfrak{a} -cofinite modules is abelian or if the kernel and the cokernel of a linear map $f: L \to M$ between cofinite module are also cofinite. This is known when \mathfrak{a} is a prime ideal and A is complete. I show that it suffices to show that if A is complete N is finite \mathfrak{p} is a prime minimal over \mathfrak{a} , then $\Gamma_{\mathfrak{p}}(N)$ or $H^1_{\mathfrak{p}}(N)$ is \mathfrak{p} -cofinite. These two modules are \mathfrak{p} -cofinite at the same time.