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A theory T is trustworthy iff, whenever a theory U is interpretable in T , then it is faithfully
interpretable. The theory of groups is an example of a trustworthy theory. The theory of
Abelian groups is not trustworthy.

Here we give some characterizations of trustworthiness. We will see that trustwor-
thiness plays a central role in comparing the degrees of faithful interpretability with the
degrees of interpretabillity.

We will sketch a simple proof of Friedman’s Theorem that finitely axiomatized, se-
quential, consistent theories are trustworthy.
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Comparing Theories

Interpretability:
M : T � U :⇔
∀C∈SU U ` C ⇒ T ` CM .

Notations:

•M : U � T :⇔M : T � U ,

• U M→ T :⇔M : T � U ,

• T � U :⇔ ∃M M : T � U ,

• T ≡ U :⇔ T � U and U � T .
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Interpretability is good if you are
talking about consistency:

• T � U ⇒ (con(T ) ⇒ con(U)).

• (T + (Q ∧ con(U))K) � U .
(Interpretation Existence Lemma)

• T�(T+(Q → incon(T+QK))K).
(Second Incompleteness Theorem)

• ≡ preserves reflexivity.

• GB ≡ (Q + con(ZF)).

About decidability:

•� preserves (left to right) essen-
tial undecidability.

• AG ≡ FOL2.
Hence ≡ does not preserve de-
cidability.
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Faithful Interpretability
M : T �f U :⇔
∀C∈SU U ` C ⇔ T ` CM .

Suppose T is decidable and T�fU ,
then U is decidable.

Examples
We have:
Gc ≡f FOL2.
Q− ≡f FOL2.
(But Q− is not recursively
boolean isomorphic to FOL2.)
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Comparing Interpretability and
Faithful Interpretability

The embedding functor of the ppo
of faithful interpretability into the
ppo of interpretability has a right
adjoint.

U �f Ṽ ⇔ emb(U) � V.

W is trustworthy iff
whenever W � U then W �f U .

V is trustworthy iff V ≡f Ṽ .
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Examples:

theory trustworthy?

PA yes
PA + incon(PA) no
IΣ1 + incon(IΣ1) yes
Gc yes
AG no

Theorem (Friedman)
Suppose W is consistent, finitely
axiomatized and sequential, thenW
is trustworthy.

We even have the stronger property
of solidity:

W ≡ V ⇒ W ≡f V.
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Examples:

theory solid?

PA no
IΣ1 + incon(IΣ1) yes
Gc no

Characterization Theorem
W is trustworthy iff W �f FOL2.

Application

Ṽ is obtained by expanding the sig-
nature with unary P and binary R.
Relativize the quantifiers in V to
P . Then

V ≡ Ṽ �f FOL2.

Alternative: no P , but replace =
in T by binary E.
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If V has infinite model then we need
neither P nor E.

We indicate some crucial ideas of
the proof the characterization the-
orem.

Proof (of “⇐”):
Suppose K : W �f FOL2. There is
an interpretation ω such that FOL2+
Qω, ω is Σ-sound.

Hence, W+QωK is Σ-sound, w.r.t.
K ′ := K ◦ ω.

Suppose M : W � V and V 0 C.
We show how to construct M∗ :
W � V s.t. W 0 CM

∗
.

Let D := (QK
′∧ conK

′
(V +¬C)).

Let M∗ := H〈D〉M .
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Suppose W ` CM∗
. Then,

W +D ` CH . On the other hand
W + D ` ¬CH . Ergo, W ` ¬D.
I.o.w.

W + QK
′
` provK

′
V (C).

By Σ-soundness: V ` C. Quod
non. Ergo: W 0 CM

∗
.
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We generalize this construction for
all C simulaneously. This employs
the usual diagonal trickery. 2

Corollary
Every RE theory W is finitely ax-
iomatizable in FOL2 modulo an in-
terpretation, i.e., there are A and
M such that:

W ` B ⇔ FOL2 + AM ` BM .

Inspection of the proof of the char-
acterization theorem shows:
W is trustworthy iff there is an in-
terpretation K such that W + QK

is Σ-sound w.r.t. K.
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A New Proof of a Theorem
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History:

19xx Friedman shows that consis-
tent, finitely axiomatized, sequen-
tial theories are trustworthy.

1985 Smoryński reports Friedman’s
result —without proof.

1987 Kraj́ıček proves that for ev-
ery consistent, finitely axioma-
tized, sequential theory T , there
is a T -cut I not containing the
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inconsistency-statement for T .

1993 Visser provides a purely syn-
tactical proof of Kraj́ıček’s theo-
rem.

2002 Visser realizes that Friedman’s
result and a version of Kraj́ıček’s
result are ‘equivalent’.

To prove:
SupposeU is consistent, finitely ax-
iomatized and sequential. To show:
U is trustworthy.

LetN : T�F, where F is a suitable
fragment of arithmetic.

Sufficient:
There is N -cut I s.t., for all Σ0

1-
sentences S:
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T ` SI ⇒ S is true.

SI is pro-version of S or ‘boosted’
S: more difficult to get true, since
a smaller witness is demanded.

Idea 1:
Can we use that other boosting trick:
the FGH-theorem?

FGH Theorem
Suppose N : T � F. Let S be Σ0

1.
Take R be such that:

Q ` R↔ S ≤ 2TR
N .

We have:

EA ` (S ∨2T⊥) ↔ (R ∨2T⊥)

↔ 2TR
N

or, equivalently,
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EA + con(T ) `
(S ↔ R) ∧ (S ↔ 2TR

N ).
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idea 2
Use restricted provability.

Suppose T is finitely axiomatized.
FGH-theorem also works for 2T,n
with:

Q ` Rn ↔ S ≤ 2T,nR
N
n .

EA + conN (T ) `
2T,nR

N
n → S.

EA + supexp + conN (T ) `
2TR

N
n → S.

n should be large enough: this only
depends on the complexities of T ,
N , S.
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Idea 3
Suppose T is finitely axiomatized
and sequential. Then, there is N -
cut I s.t.
T ` 2I

T,nA→ A.

We can make it work for fixed S:
Pick n large enough. Find n-reflecting
I . We show:

U ` SI → RNn .

Reason in U .
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So for every S, we can find such an
I . How to eliminate dependence on
S?

Idea 4
Use Σ0

1-truth predicate trueΣ.

EA ` S ↔ trueΣ(#S).

For anyN -cut I we can find subcut
J s.t.

U ` SJ → trueIΣ(#S).

Complexity of trueΣ(#S) is inde-
pendent of S.
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Propositional Provability Logic

Löb’s Logic GL.

L1 ` φ⇒ ` 2φ

L2 ` 2(φ→ ψ) → (2φ→ 2ψ)

L3 ` 2φ→ 22φ

L4 ` 2(2φ→ φ) → 2φ
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Let T be an arithmetical theory.
Let (·)∗ from the modal language
to the arithmetical language sat-
isfy:

• (·)∗ commutes with the
propositional connectives,

• (2φ)∗ := provT (]φ∗)

PrlT := {φ | ∀(·)∗ T ` φ∗}.

Theorem
[Löb, Henkin][Wilkie & Paris, Buss]
GL ⊆ PrlT , for all theories T with
p-time decidable axiom set extend-
ing Buss’ theory S1

2.
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Theorem [Solovay]
PrlT = GL
where T is Σ-sound, p-time axiom-
atized and extends EA.

Open Problem
What is the provability logic of S1

2,
I∆0 + Ω1?

Can we Escape this Awesome
Stability?

Extend the modal language:
E.g. with φ� ψ for:
(T + f∗φ) � (T + f∗ψ).
Or: to predicate logic . . .
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Consider another underlying logic:
E.g. study the provability logic of
HA.

Leivant’s Principle
` 2(φ ∨ ψ) → 2(φ ∨2ψ).

The case of Predicate Logic
Let’s call the corresponding logic
Prlpred(T ).

Theorem (Vardanyan, McGee)
Prlpred(PA) is complete Π0

2.

Inspection shows that Vardanyan’s
theorem generalizes to all extensions
of IΣ1 that do not prove their own
inconsistency.

Can we extend this to more theo-
ries?
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Main obstacle: all proofs use for-
malization of Tennenbaum’s Theo-
rem. This uses too much induction.

So we look for a Tennenbaum-free
proof.

Sketch of the proof
Consider theory T and Language
for modal predicate logic with:
Z, S, A, M, E, X .

Define:

• ν0(z) := Z(z),

• νn+1(z) := ∃u (νn(u)∧S(u, z)).

We write C(n̆) for:
∃z (νn(z) ∧ C(z)).
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We construct A and B in this lan-
guage.

•A is X-free.

• ` A→ Q.

• T + Ae is sufficiently sound.

• For every (·)∗, there is an n such
that:
T + A∗ ` B(n̆, X)∗.

• There is class Γ s.t.
for every m, there is C ∈ Γ, s.t.
if B(n̆, X)[X :=C] is true, then
n ≥ m.

Let P := ∀x ∃y P0(x, y),
P0 ∈ ∆0. Take:
P̃ := (A→ ∃z (B(z,X) ∧

∀x<z ∃y P0(x, y))).
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To show: P ⇔ P̃ ∈ Prlpred(T ).

Proof from the conditions:
“⇒” supose P . Consider (·)∗. There
is n s.t.:
(a) T + A∗ ` B(n̆, X)∗.

We have:
∀x<n ∃y P0(x, y).
Hence:
Q ` ∀x<n ∃y P0(x, y).
Ergo:
(b) T+A∗ ` (∀x<n̆ ∃y P0(x, y))

∗.

Combining (a) and (b):
T ` (P̃ )∗.

“⇐” Suppose P̃ ∈ Prlpred(T ).
Consider any m.
Pick C the formula in Γ for m. We
find that:
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T ` (A→ ( ∃z B(z,X) ∧
∀x<z ∃y P0(x, y)))

e[X :=C].

Assuming thatA is sufficiently sound,
we find:
∃n B(n,X)e[X :=C] ∧

∀x<n ∃y P0(x, y).
But n ≥ m.

Our A, B, Γ:

•A := �(EA∧∀y (Z(y) → 2Z(y))∧
∀y∀z (S(y, z) → 2S(y, z))),

•B := 2(2X ↔ 2TrueΣ0
1
(x)).

• Γ = {2n
T⊥ | n ∈ ω}.

FGH-theorem
∀A ∃R ∈ Σ0

1 EA ` 2UA↔ 2UR
∗.
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•A is X-free. OK

• ` A→ Q. OK

• T + Ae is sufficiently sound.
Assume T is Σ-sound and con-
tains EA.

• For every (·)∗, there is an n such
that: T + A∗ ` B(n̆, X)∗.
Use FGH-theorem.

• For every m, there is C ∈ Γ, s.t.
if B(n̆, X)[X :=C] is true, then
n ≥ m.
Or else we get:

T ` 2i
T⊥ ↔ 2

j
T⊥,

for j > i. Contradicting Löb’s
theorem and Σ-soundness.
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