No Escape from Vardanyan's Theorem

A. Visser

Department of Philosophy Universiteit Utrecht The Netherlands

The idea of assigning structures of kind Y to structures of kind X in order to obtain information is a useful methodology in mathematics. The structures of kind Y are often simpler and better understood. Provability logic is a case in point: we assign to arithmetical theories certain propositional modal logics that are in many respects simpler than the original theories. These modal logics give us full information about arithmetical reasoning of a certain restricted sort. A disadvantage of this approach is that provability logic does not yield differential information: the modal logic assigned is the same for a wide class of reasonable theories.

The situation becomes a bit better when we expand the modal language. One possible expansion is to a predicate logical modal language. Here we certainly do have differential information about the original theories. Vardanyan's theorem concerns this situation. Vardanyan's Theorem tells us that the set of PA-valid principles of Quantified Modal Logic, QML, is complete Π_2^0 . Thus, the PA-valid modal principles are more complicated than the theory PA itself. Thus, the result can be viewed as a negative result for the case of PA.

One might hope that for other theories than PA the situation would be a bit better. No such luck: we will show that Vardanyan's Theorem extends to a wide range of theories. The main idea of the proof is to avoid the use of Tennenbaum's Theorem.

FAITH & FALSITY

Lecture for the Workshop $Logic,\ Algebra\ {\cal E} \ Arithmetic$

Tehran, October 18, 2003 Albert Visser

Comparing Theories

Interpretability:

 $M: T \rhd U :\Leftrightarrow$ $\forall C \in \mathcal{S}_U \ U \vdash C \Rightarrow T \vdash C^M.$

Notations:

- $\bullet M: U \lhd T :\Leftrightarrow M: T \rhd U,$
- $\bullet \ U \xrightarrow{M} T : \Leftrightarrow M : T \rhd U,$
- $\bullet T \rhd U :\Leftrightarrow \exists M \ M : T \rhd U,$
- $\bullet T \equiv U : \Leftrightarrow T \rhd U \text{ and } U \rhd T.$

Interpretability is good if you are talking about consistency:

- $\bullet T \rhd U \Rightarrow (\operatorname{con}(T) \Rightarrow \operatorname{con}(U)).$
- $(T + (\mathbf{Q} \wedge \mathbf{con}(U))^K) \triangleright U$. (Interpretation Existence Lemma)
- $T \triangleright (T + (\mathbf{Q} \rightarrow \mathsf{incon}(T + \mathbf{Q}^K))^K)$. (Second Incompleteness Theorem)
- $\bullet \equiv$ preserves reflexivity.
- $GB \equiv (Q + con(ZF))$.

About decidability:

- → preserves (left to right) essential undecidability.
- $AG \equiv FOL_2$. Hence \equiv does not preserve decidability.

Faithful Interpretability $M: T \rhd_{\mathsf{f}} U :\Leftrightarrow \\ \forall C \in \mathcal{S}_{U} \ U \vdash C \Leftrightarrow T \vdash C^{M}.$

Suppose T is decidable and $T \triangleright_{\mathsf{f}} U$, then U is decidable.

Examples

We have:

 $G^c \equiv_f FOL_2$. $Q^- \equiv_f FOL_2$. (But Q^- is not recursively boolean isomorphic to FOL_2 .)

Comparing Interpretability and Faithful Interpretability

The embedding functor of the ppo of faithful interpretability into the ppo of interpretability has a right adjoint.

$$U \lhd_{\mathsf{f}} \widetilde{V} \Leftrightarrow \mathsf{emb}(U) \lhd V.$$

W is trustworthy iff whenever $W \triangleright U$ then $W \triangleright_{\mathsf{f}} U$.

V is trustworthy iff $V \equiv_{\mathsf{f}} \widetilde{V}$.

Examples:

theory	trustworthy?
PA	yes
PA + incon(PA)	no
$I\Sigma_1 + incon(I\Sigma_1)$	yes
G^c	yes
AG	no

Theorem (Friedman)

Suppose W is consistent, finitely axiomatized and sequential, then W is trustworthy.

We even have the stronger property of *solidity*:

$$W \equiv V \Rightarrow W \equiv_{\mathsf{f}} V.$$

Examples:

theory	solid?
PA	no
$I\Sigma_1 + incon(I\Sigma_1)$	yes
$ G^c $	$\mid no \mid$

Characterization Theorem

W is trustworthy iff $W \rhd_{\mathsf{f}} \mathsf{FOL}_2$.

Application

 \widetilde{V} is obtained by expanding the signature with unary P and binary R. Relativize the quantifiers in V to P. Then

$$V \equiv \widetilde{V} \rhd_{\mathsf{f}} \mathsf{FOL}_2.$$

Alternative: no P, but replace = in T by binary E.

If V has infinite model then we need neither P nor E.

We indicate some crucial ideas of the proof the characterization theorem.

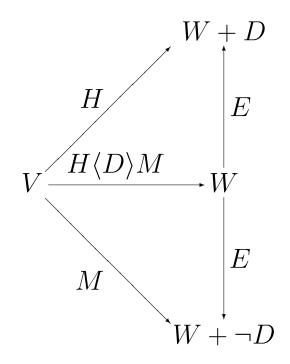
Proof (of "⇐"):

Suppose $K: W \triangleright_{\mathsf{f}} \mathsf{FOL}_2$. There is an interpretation ω such that $\mathsf{FOL}_2+\mathsf{Q}^{\omega}, \omega$ is Σ -sound.

Hence, $W + \mathbf{Q}^{\omega K}$ is Σ -sound, w.r.t. $K' := K \circ \omega$.

Suppose $M: W \triangleright V$ and $V \not\vdash C$. We show how to construct $M^*: W \triangleright V$ s.t. $W \not\vdash C^{M^*}$.

Let $D := (\mathbf{Q}^{K'} \wedge \mathbf{con}^{K'}(V + \neg C)).$ Let $M^* := H\langle D \rangle M.$



Suppose $W \vdash C^{M^*}$. Then, $W + D \vdash C^H$. On the other hand $W + D \vdash \neg C^H$. Ergo, $W \vdash \neg D$. I.o.w.

$$W + \mathsf{Q}^{K'} \vdash \mathsf{prov}_V^{K'}(C).$$

By Σ -soundness: $V \vdash C$. Quod non. Ergo: $W \nvdash C^{M^*}$.

We generalize this construction for all C simulaneously. This employs the usual diagonal trickery.

Corollary

Every RE theory W is finitely axiomatizable in FOL_2 modulo an interpretation, i.e., there are A and M such that:

$$W \vdash B \Leftrightarrow \mathsf{FOL}_2 + A^M \vdash B^M$$
.

Inspection of the proof of the characterization theorem shows:

W is trustworthy iff there is an interpretation K such that $W + \mathbf{Q}^K$ is Σ -sound w.r.t. K.

A New Proof of a Theorem of Friedman

Lecture for the Workshop $Logic,\ Algebra\ {\cal E} \ Arithmetic$

Tehran, October 21, 2003 Albert Visser

History:

- 19xx Friedman shows that consistent, finitely axiomatized, sequential theories are trustworthy.
- 1985 Smoryński reports Friedman's result —without proof.
- 1987 Krajíček proves that for every consistent, finitely axiomatized, sequential theory T, there is a T-cut I not containing the

inconsistency-statement for T.

- 1993 Visser provides a purely syntactical proof of Krajíček's theorem.
- **2002** Visser realizes that Friedman's result and a version of Krajíček's result are 'equivalent'.

To prove:

Suppose U is consistent, finitely axiomatized and sequential. To show: U is trustworthy.

Let $N: T \triangleright \mathsf{F}$, where F is a suitable fragment of arithmetic.

Sufficient:

There is N-cut I s.t., for all Σ_1^0 sentences S:

$$T \vdash S^I \Rightarrow S$$
 is true.

 S^I is pro-version of S or 'boosted' S: more difficult to get true, since a smaller witness is demanded.

Idea 1:

Can we use that other boosting trick: the FGH-theorem?

FGH Theorem

Suppose $N: T \triangleright \mathsf{F}$. Let S be Σ_1^0 . Take R be such that:

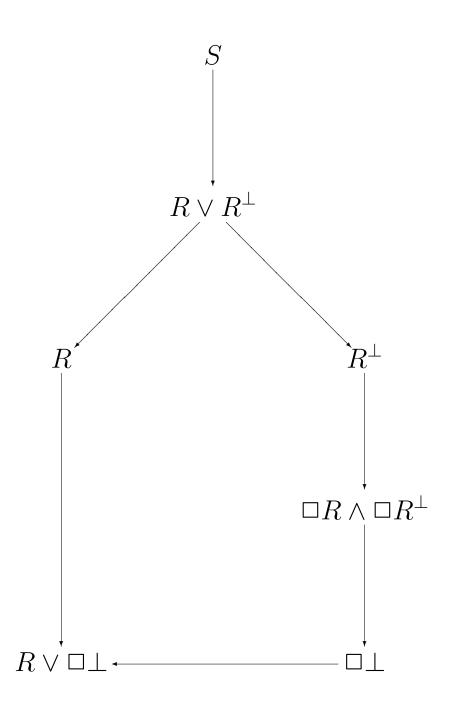
$$Q \vdash R \leftrightarrow S \le \Box_T R^N.$$

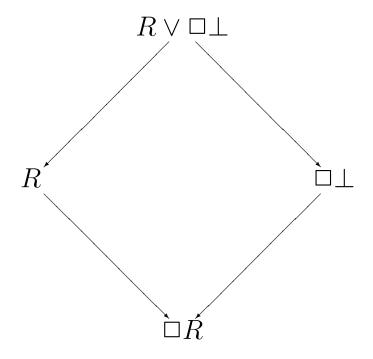
We have:

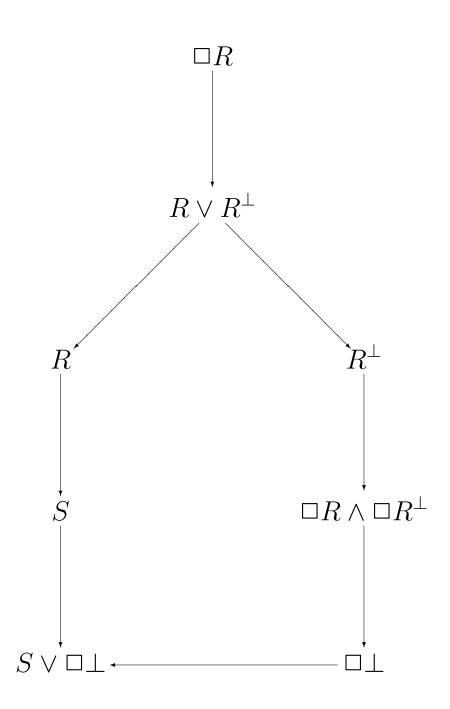
$$\mathsf{EA} \vdash (S \lor \Box_T \bot) \; \leftrightarrow \; (R \lor \Box_T \bot) \\ \; \leftrightarrow \; \Box_T R^N$$

or, equivalently,

$$\begin{split} \mathsf{E}\mathsf{A} + \mathsf{con}(T) \vdash \\ (S \leftrightarrow R) \land (S \leftrightarrow \Box_T R^N). \end{split}$$







idea 2

Use restricted provability.

Suppose T is finitely axiomatized. FGH-theorem also works for $\square_{T,n}$ with:

$$Q \vdash R_n \leftrightarrow S \leq \square_{T,n} R_n^N.$$

$$\mathsf{EA} + \mathsf{con}^N(T) \vdash \\ \Box_{T,n} R_n^N \to S.$$

$$\begin{aligned} \mathsf{EA} + \mathsf{supexp} + \mathsf{con}^N(T) \vdash \\ \Box_T R_n^N \to S. \end{aligned}$$

n should be large enough: this only depends on the complexities of T, N, S.

Idea 3

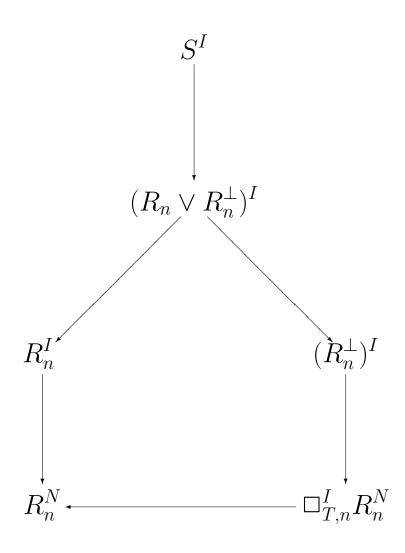
Suppose T is finitely axiomatized and sequential. Then, there is Ncut I s.t.

$$T \vdash \Box^I_{T,n} A \to A.$$

We can make it work for fixed S: Pick n large enough. Find n-reflecting I. We show:

$$U \vdash S^I \to R_n^N$$
.

Reason in U.



So for every S, we can find such an I. How to eliminate dependence on S?

Idea 4

Use Σ_1^0 -truth predicate true Σ .

$$\mathsf{EA} \vdash S \leftrightarrow \mathsf{true}_{\Sigma}(\underline{\#S}).$$

For any N-cut I we can find subcut J s.t.

$$U \vdash S^J \to \mathsf{true}_{\Sigma}^I(\#S).$$

Complexity of $true_{\Sigma}(\underline{\#S})$ is independent of S.

No Escape from
Vardanyan's Theorem
Lecture for the Workshop
Logic, Algebra &
Arithmetic
Tehran, October 21, 2003
Albert Visser

Propositional Provability Logic

Löb's Logic GL.

L1
$$\vdash \phi \Rightarrow \vdash \Box \phi$$

L2
$$\vdash \Box(\phi \rightarrow \psi) \rightarrow (\Box\phi \rightarrow \Box\psi)$$

L3
$$\vdash \Box \phi \rightarrow \Box \Box \phi$$

L4
$$\vdash \Box(\Box\phi \rightarrow \phi) \rightarrow \Box\phi$$

Let T be an arithmetical theory. Let $(\cdot)^*$ from the modal language to the arithmetical language satisfy:

- $(\cdot)^*$ commutes with the propositional connectives,
- $\bullet \; (\Box \phi)^* := \mathsf{prov}_T(\sharp \phi^*)$

$$\mathsf{Prl}_T := \{ \phi \mid \forall (\cdot)^* \ T \vdash \phi^* \}.$$

Theorem

[Löb, Henkin][Wilkie & Paris, Buss] $\mathsf{GL} \subseteq \mathsf{Prl}_T$, for all theories T with p-time decidable axiom set extending Buss' theory S_2^1 .

Theorem [Solovay]

$$Prl_T = GL$$

where T is Σ -sound, p-time axiomatized and extends EA .

Open Problem

What is the provability logic of S_2^1 , $I\Delta_0 + \Omega_1$?

Can we Escape this Awesome Stability?

Extend the modal language:

E.g. with $\phi > \psi$ for:

$$(T+f^*\phi) \rhd (T+f^*\psi).$$

Or: to predicate logic ...

Consider another underlying logic: E.g. study the provability logic of HA.

Leivant's Principle
$$\vdash \Box(\phi \lor \psi) \to \Box(\phi \lor \Box\psi).$$

The case of Predicate Logic Let's call the corresponding logic $Prl_{pred}(T)$.

Theorem (Vardanyan, McGee) $Prl_{pred}(PA)$ is complete Π_2^0 .

Inspection shows that Vardanyan's theorem generalizes to all extensions of $I\Sigma_1$ that do not prove their own inconsistency.

Can we extend this to more theories?

Main obstacle: all proofs use formalization of Tennenbaum's Theorem. This uses too much induction.

So we look for a Tennenbaum-free proof.

Sketch of the proof

Consider theory T and Language for modal predicate logic with:

 $\mathsf{Z}, \mathsf{S}, \mathsf{A}, \mathsf{M}, \mathsf{E}, X.$

Define:

- $\bullet \ \nu_0(z) := \mathsf{Z}(z),$
- $\bullet \ \nu_{n+1}(z) := \exists u \ (\nu_n(u) \land \mathsf{S}(u,z)).$

We write C(n) for:

$$\exists z \ (\nu_n(z) \land C(z)).$$

We construct A and B in this language.

- \bullet A is X-free.
- $\bullet \vdash A \rightarrow Q$.
- $T + A^{e}$ is sufficiently sound.
- For every $(\cdot)^*$, there is an n such that:

$$T + A^* \vdash B(\breve{n}, X)^*$$
.

• There is class Γ s.t. for every m, there is $C \in \Gamma$, s.t. if $B(\breve{n},X)^{[X:=C]}$ is true, then $n \geq m$.

Let
$$P := \forall x \,\exists y \, P_0(x, y),$$

 $P_0 \in \Delta_0$. Take:
 $\tilde{P} := (A \to \exists z \, (B(z, X) \land \forall x < z \,\exists y \, P_0(x, y))).$

To show: $P \Leftrightarrow \tilde{P} \in \mathsf{Prl}_{\mathsf{pred}}(T)$.

Proof from the conditions:

" \Rightarrow " supose P. Consider $(\cdot)^*$. There is n s.t.:

(a)
$$T + A^* \vdash B(\breve{n}, X)^*$$
.

We have:

$$\forall x < n \exists y \ P_0(x,y).$$

Hence:

$$Q \vdash \forall x < \underline{n} \exists y \ P_0(x, y).$$

Ergo:

(b)
$$T+A^* \vdash (\forall x < \breve{n} \exists y \ P_0(x,y))^*$$
.

Combining (a) and (b):

$$T \vdash (\tilde{P})^*$$
.

" \Leftarrow " Suppose $\tilde{P} \in \mathsf{Prl}_{\mathsf{pred}}(T)$.

Consider any m.

Pick C the formula in Γ for m. We find that:

$$T \vdash (A \to (\exists z \ B(z, X) \land \forall x < z \ \exists y \ P_0(x, y)))^{e[X := C]}.$$

Assuming that A is sufficiently sound, we find:

$$\exists n \ B(n,X)^{\mathbf{e}[X:=C]} \land \\ \forall x < n \ \exists y \ P_0(x,y).$$

But $n \geq m$.

Our A, B, Γ :

$$\bullet \ A := \boxdot(\mathsf{EA} \land \forall y \, (\mathsf{Z}(y) \to \Box \mathsf{Z}(y)) \land \\ \forall y \forall z \, (\mathsf{S}(y,z) \to \Box \mathsf{S}(y,z))),$$

$$\bullet \ B := \Box (\Box X \leftrightarrow \Box \mathsf{True}_{\Sigma^0_1}(x)).$$

$$\bullet \ \Gamma = \{ \Box_T^n \bot \mid n \in \omega \}.$$

FGH-theorem

$$\forall A \; \exists R \in \Sigma_1^0 \; \mathsf{EA} \vdash \Box_U A \leftrightarrow \Box_U R^*.$$

- \bullet A is X-free. OK
- $\bullet \vdash A \rightarrow Q$. OK
- $T + A^{e}$ is sufficiently sound. Assume T is Σ -sound and contains EA.
- For every $(\cdot)^*$, there is an n such that: $T + A^* \vdash B(\breve{n}, X)^*$.

 Use FGH-theorem.
- For every m, there is $C \in \Gamma$, s.t. if $B(\breve{n},X)^{[X:=C]}$ is true, then $n \geq m$.

 Or else we get: $T \vdash \Box_T^i \bot \leftrightarrow \Box_T^j \bot,$

for j > i. Contradicting Löb's theorem and Σ -soundness.