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ABSTRACT

In this paper, we propose a variational model for object
segmentation using the active contour method, a geo-
metric shape prior and the Mumford-Shah functional.
We propose an energy functional composed by three
terms: the first one is based on image gradient, which
detects edges, the second term constrains the active
contour to get a shape compatible with a statistical
model of the target shape, which provides robustness
against missing shape information due to cluttering,
occlusion and gaps, and the third part drives globally
the shape prior towards a homogeneous intensity re-
gion. The minimization of the functional gives a sys-
tem of coupled ordinary and partial differential equa-
tions which steady state, computed in a level set frame-
work, provides the solution of the segmentation prob-
lem. We mathematically justify our segmentation vari-
ational model by proving the existence of a solution
minimizing the energy functional in the space of func-
tions of bounded variation. Applications of the pro-
posed model are presented on various synthetic and
real-world images.

1. INTRODUCTION AND MOTIVATIONS

During the last decade, variational methods and partial
differential equations (PDEs) have been more and more
employed to analyse, understand and exploit properties
of images in order to design powerful application tech-
niques. Variational methods formulate an image pro-
cessing or computer vision problem as an optimization
problem depending on the unknown variables (which
are functions) of the problem. When the optimization
functional is differentiable, the calculus of variations
provides a tool to find the extremum of the functional
leading to a PDE whose steady state gives the solution

of the imaging or vision problem. Variational methods
and PDEs are well established domains of functional
analysis which can offer strong frameworks to correctly
formulate image problems. A very attractive property
of these mathematical frameworks is to state well-posed
problems to guarantee existence, uniqueness and regu-
larity of solutions. Successful mathematical frameworks
of functional analysis in computer vision are the theory
of viscosity solutions [1] and the framework of functions
of bounded variation [2, 3] which have given powerful
tools to mathematically justify solutions of many image
problems. Finally, applications of variational methods
and PDEs have produced a lot of literature in image
processing, computer vision and computer graphics as
one can read in several books [4, 5, 6, 7, 8].
In computer vision, shape analysis is a core component
towards automated vision systems. It can be decom-
posed into several research domains including shape
modeling, shape registration, segmentation and pat-
tern recognition. Among these research aeras, image
segmentation plays an important role in computer vi-
sion since it is often the basis to many applications.
Image segmentation has the global objective of deter-
mining the semantically important regions in images.
In the variational framework, it is solved by two ap-
proaches: the Mumford-Shah model and the active con-
tour method. The first one aims at finding a partition
of an image into its constituent parts, which is real-
ized by minimizing the Mumford-Shah functional [9],
and the second one detects more specific parts using
the model of active contours/snakes/propagating inter-
faces [10]. See Figure 1 as an example of segmenta-
tion. Active contour method is a powerful technique
to perform segmentation of natural structures. Ini-
tially proposed by Kass et al. [10], active contours
are evolving curves/surfaces (represented by PDEs) un-
der a field of forces, depending on image features and
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(a) original image (b) segmented image (c) initial active contour (d) final active contour

Fig. 1. In the variational framework, image segmentation can be realized with the Mumford-Shah functional
(a),(b) and the active contours method (c),(d)

intrinsic curve properties, that leads to the minimiza-
tion of an objective functional. The numerical solu-
tion of PDEs in the context of propagating contours
uses the powerful technique of level sets whose theorit-
ical fundations are presented by Osher and Sethian in
[11]. Level set methods are suitable for evolving inter-
faces since they are parameter-free and can deal with
topological changes. Segmentation performances of fine
real-world shapes such as medical structures [12, 13, 14]
are remarquable with the level set active contours since
they evolve locally (due to PDEs) to globally optimize
the functional (the variational model). However, this
attractive advantage is also the weakness of the first-
generation snakes in presence of noise and bad image
contrast as they can lead to bad segmentation results
of important regions. To overcome this drawback, some
authors have incorporated region-based evolution crite-
ria into active contours, built from statistics and homo-
geneous intensity requirements [15, 16, 17, 18, 19, 20].
However the segmentation of structures of interest with
these second-generation active contours gives bad out-
comes in the presence of occlusions and strongly clut-
tered background. Therefore the integration in the seg-
mentation task of prior shape knowledge about the re-
gion to segment was naturally proposed as a solution
to overcome these problems.
The geometric shape prior of regions to be extracted
can be defined by different models such as Fourier de-
scriptors, medial axis or atlas-based parametric models.
A performant shape representation has to capture all
natural variations, be invariant with respect to spatial
transformations and compact to reduce the number of
model parameters. A solution consists in using a set
of training shapes of object of interest and look for a
compact representation which can best represent the
training set. Shape models based on this idea are built
on statistics such as the principal components analysis
(PCA) [21, 22, 23, 24]. Recently, the level set repre-

sentation of shapes, used in the active contours frame-
work, has been employed as shape modeling [22, 23, 24].
Level set modeling presents some strong properties in
shape description. Firstly, it is an implicit and intrin-
sic representation and as previously said, it is indepen-
dant of the contour parametrization and can deal with
topological changes. This shape model can represent
shapes of any intrinsic dimensions such as curves, sur-
faces and hyper-surfaces. Then, it also provides a nat-
ural way to estimate shape geometric properties such
as the curvature and the normal to contours. Level
set functions are often represented by signed distance
functions (SDFs) defined on the image space where the
shape information is propagated in the normal direction
in such a way that the shape produces similar shapes
(iso-contours/isophotes) consistently aligned in the im-
age domain. Finally, this shape representation is co-
herent with the level set variational model of evolving
contours so that it can be naturally integrate in the ac-
tive contours framework.
The integration of a geometric shape model in the seg-
mentation process can be realized with a shape regis-
tration method to map the prior shape onto the snake
shape (the target shape) as done in [22, 25, 23]. The
shape registration problem consists in determining a
geometric deformation field (rigid, affine, non-rigid) be-
tween a reference shape and a target shape which op-
timizes a shape correspondance criterion. In [22], Lev-
enton et al. have employed level set representations of
the prior shape and the active contours and they have
registered both shapes by maximizing a similarity mea-
sure between the two level sets. They have observed
that the level set representation improves the registra-
tion, both in terms of robustness and accuracy. The
main reason is that the contour point-wise correspon-
dance problem is replaced by a grid point-wise intensity
correspondance problem between the level set surfaces
representing the prior shape and the snake.
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The objective of this paper is to propose a segmenta-
tion method for extracting structures of interest whose
global shape is a priori known thanks to a statistical
model. For the reasons previously described, we will
use an implicit/level set representation of shapes and
employ a compact model to represent shapes of a train-
ing set. The model developed by Leventon et al., based
on the principal components analysis of training shapes
represented by level set functions, appears to fulfil our
shape model conditions. Indeed, this linear model al-
lows us to represent global shape variations of a training
family of a structure of interest. This shape informa-
tion being global, it does not so permit to precisely
capture all local shape variations present in the train-
ing set. But we think that local shape variations of the
object to segment can be accurately and efficiently seg-
mented by boundary-based active contours. Combining
shape prior with geodesic active contours, Chen et al.
have proposed in [25] a variational model composed by
a shape term calculated from a shape prior (not proba-
bilist) and by the geodesic active contours term which
simultaneously achieves registration and segmentation.
Therefore, we firstly propose to extend the segmenta-
tion model of Chen et al. by integrating the statisti-
cal shape model of Leventon et al.. We will demon-
strate that the proposed variational model is mathe-
matically justified since a solution minimizing the func-
tional exists in the space of functions of bounded vari-
ation. Moreover the statistical shape term being in a
variational formulation, we will use other segmentation
variational terms such as region-based terms in [18, 19]
to realize the segmentation. We secondly propose to
globally guide the shape prior towards regions of in-
terest in images by using region-based image features
based on the Mumford-Shah functional [17, 18]. This
additional term increases the robustness of the segmen-
tation model and the speed of convergence.
In section 2, we briefly review some state-of-the-art re-
sults which are directly connected to our work. In sec-
tion 3, we define our new variational model to real-
ize objects segmentation with a prior shape knowledge
and derive the system of evolution equations minimiz-
ing the proposed energy. Then in section 4, we intro-
duce the Mumford-Shah functional in the framework.
We present experimental results to validate the pro-
posed method on 2-D synthetic and real-world images.
Finally, we conclude and compare our model to other
methods and we show in appendix the existence of a
solution for our minimization problems.

2. ACTIVE CONTOUR FAMILIES AND
PCA SHAPE MODELING

In this section, we propose to briefly review the three
main families of active contours, i.e. the boundary-
based, the region-based and the shape-based active con-
tours. We also present the shape model of Leventon et
al. [22].

2.1. Boundary-Based/Geodesic Active Con-
tours

The first model of boundary-based active contour was
proposed by Kass et al. [10]. This model locates
sharp image intensity variations by deforming a curve
C towards the edges of objects. The evolution equa-
tion of C is given by the minimization of the energy

functional F (C) =
∫ 1

0
|C ′(p)|2dp + β

∫ 1

0
|C ′′(p)|2dp +

λ
∫ 1

0
g2(|∇I(C(p))|)dp which g is an edge detecting

function vanishing at infinity. This segmentation model
presents two main drawbacks. Firstly, the functional F
depends on the parametrization of the curve C. This
means that different parametrizations of the curve give
different solutions for the same initial condition. Sec-
ondly, this approach does not take into account changes
of topology. As a result, the final curve has the same
topology as the initial one. To overcome the first
limitation, Caselles et al. [26] and Kichenassamy et
al. [27, 28] have proposed a new energy functional
which is invariant w.r.t. a new curve parametriza-
tion. The new intrinsic energy functional is F GAC(C) =

2
√

λ
∫ L(C)

0
g(|∇I(C(s))|)ds, where ds is the Euclidean

element of length. F GAC is actually a new length ob-
tained by weighting the Euclidean element of length
by the function g which contains information regard-
ing the objects boundaries. Caselles et al. have also
proved in [26] that the final curve is a geodesic in
a Riemannian space. This geodesic is computed by
the calculus of variations providing the Euler-Lagrange
equations of F GAC and the gradient descent method
which gives the flow minimizing the functional F GAC :
∂tC = (κg− < ∇g,N >)N , where N is the unit normal
to the curve C and κ is its curvature. To overcome the
second limitation, Osher and Sethian proposed the level
set method in [11, 5]. The curve C is thus implicitely
represented by a level set function ϕ. Finally, a curve
evolution ∂tC = FN can be re-written in a level set
formulation: ∂tϕ = F |∇ϕ| which evolution of the curve
C coincides with the evolution of the zero level set of ϕ
as shown in [26].
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2.2. Region-Based Active Contours

Paragios and Deriche [15, 16] have employed new evolu-
tion criteria built from statistics on the regions to seg-
ment. Their variational method, called geodesic active
regions, allows to unify boundary- and region-based sta-
tistical knowledge into a single energy functional which
is minimized by a set of PDEs.
In [19, 20], a general paradigm for active contours is
presented, derived from functionals that include local
and global statistical measures of homogeneity for the
regions being segmented. Their criteria to minimize
have the general form:

FR(Ωin,Ωout, C) =

∫

C

kb(x)ds+

∫

Ωin
kin(x,Ωin)dΩ +

∫

Ωout
kout(x,Ωout)dΩ, (1)

where Ωin, Ωout are respectively the inner and the outer
region of the active contour, kin and kout are the de-
scriptors of these regions and kb is the boundary de-
scriptor. To determine the solution minimizing (1),
shape optimization tools [29, 30] are needed to differen-
tiate (1) w.r.t. the domains Ωin and Ωout which evolve
in time. Then, the evolution equations of active con-
tours are deduced from the derivative of F R to minimize
as fast as possible F R. By using the entropy descriptor
from [19], the following flow produces very good seg-
mentation results as we can see on Figure 2 (a) and
(b).
In [17, 18, 31], a method to solve the Mumford-Shah
functional [9] in the context of propagating contours is
proposed. The Mumford and Shah’s approach to solve
the image segmentation problem has been extensively
studied (see [4, 7] and [18] for references) but we re-
strict our attention to the active contours framework.
The Mumford-Shah minimization problem is defined as
follows:

inf
u,C

{FMS(u,C) =

∫

Ω
|u − u0|2dx + µ

∫

Ω−C
|∇u|2 + νHN−1(C)}, (2)

where u corresponds to an optimal piecewise smooth
approximation of an original image u0, C represents
the edges of u and the length of C is given by the (N -
1)-dimensional Hausdorff measure HN−1(C) [2]. Chan
and Vese [17, 18] have proposed a model to minimize
the functional (2). A piecewise smooth approximation
of a given image is computed (which allows image de-
noising) by minimizing the following functional w.r.t.
a level set function ϕ and two functions uin and uout

(we consider here only two regions Ωin and Ωout even
if Chan and Vese have solved the complete image par-

titioning problem):

FMS
CV (uin, uout, ϕ) = ν

∫

Ω

|∇H(ϕ)|+
∫

Ω
(|uin − u0|2 + µ|∇uin|2)H(ϕ)dx +

∫

Ω
(|uout − u0|2 + µ|∇uout|2)H(−ϕ)dx, (3)

where H is the Heaviside function. The evolution equa-
tion of the level set function embedding the active con-
tour is as follows:

∂tϕ = δ(ϕ)(νκ + |uout − u0|2 + µ|∇uout|2 −
|uin − u0|2 − µ|∇uin|2). (4)

An example of segmentation using this model is given
on Figure 2 (c)-(e).

2.3. Shape-Based Active Contours

Leventon et al. [22, 32] have developed active contours
employing a statistical shape model defined by a PCA
over a training set of the structure of interest (see sec-
tion 2.4). In their approach, the active surface, rep-
resented by a level set function, evolves locally based
on image gradients and surface curvature like the clas-
sical geodesic active contour and globally towards the
maximum a posteriori probability (MAP) of position
and shape of the prior shape model of the object to
be segmented. Moreover, the a posteriori probability of
position and shape is maximized at each iteration by an
independant optimization process. It has the advantage
of providing a segmentation model robust with respect
to noise and initial positioning surface but it has also
the drawback to loose the nature of a PDE for the sur-
face evolution equation since two independant stages
are now necessary to evolve the surface. The evolution
equation is the following one:

u(t + 1) = u(t) + λ1(g(c + κ)|∇u(t)|+ < ∇u(t),∇g >)

+ λ2(u
?(t) − u(t)). (5)

where u? is the MAP final position and shape of the
prior shape model. The second term of the right-hand
side of (5) represents the classical term of the geodesic
active contour. And the third term evolves the shape
of the active surface towards the one given by the MAP
estimation.
Tsai et al. [33, 34] have integrated the statistical model
of shape of Leventon et al. in the reduced version of the
Mumford-Shah functional proposed by Chan et Vese in
[17] to segment images containing known object types.
In [35, 25], Chen et al. have designed a novel varia-
tional model that incorporates prior shape knowledge
into geometric/geodesic active contours. Contrary to
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(a) (b) (c) (d) (e)

Fig. 2. Figures (a),(b) show a segmentation using the region-based active contour of Jehan-Besson et al., Figures
(c),(d) present a segmentation using the active contour of Chan and Vese based on the Mumford-Shah functional
and Figure (e) represents a smooth approximation of the hand.

Leventon’s approach, the shape model C? of Chen is
not a probabilistic one. It is computed by averaging a
training set of rigidly registered curves. However, this
variational approach has the advantage to mathemati-
cally demonstrate the existence of solutions minimizing
the following energy functional which is not the case in
the Leventon’s model. The functional of Chen is:

FS(C, µ, θ, T ) =
∫ 1

0
(g(|∇I(C(p))|) + λ

2 d2(µRC(p) + T ))|C ′(p)|dp, (6)

where C is the active contour, (µ,θ,T ) are the param-
eters of a rigid transformation and d is the distance
function of C?, the target shape. This functional is
thus minimized when the active contour has captured
high image gradients and the shape prior. They have
showed the good ability of the model to extract real-
world structures in which the complete boundary was
either missing or had low resolution and low constrat
[35, 25].
Paragios and Rousson in [23, 36] have built a new level
set representation of shape from a training set which is
able to capture global and local shape variations. They
have used it to non-rigidly register two shapes and to
segment objects with a modified version of the geodesic
active regions.
Finally, Cremers et al. [37, 38, 39] have modified the
Mumford-Shah functional to incorporate two statisti-
cal models of parametric shape in order to efficiently
segment known objects in the case of misleading infor-
mation due to noise, occlusion and strongly cluttered
background. Concerning the shape model, they have
assumed in [37] that the training shapes form a multi-
variate Gaussian distribution and they have employed
in [38] a nonlinear shape statistic derived from an ex-
tension of the kernel PCA.

2.4. The Statistical Shape Model of Leventon et
al.

We finish this section by presenting the shape model
developed by Leventon et al. [22] which we use in our
segmentation model. This shape model is computed by
the PCA which main advantage is to capture the princi-
pal features of a training set while removing redundant
information. Cootes et al. [21] have employed success-
fully this technique to segment different kind of objects.
The new idea of Leventon et al. [22] is to apply the PCA
not on the parametric geometric curves as Cootes did
but on the SDFs of these curves, which are implicit rep-
resentations. They justified their choice by two facts.
The first one is that the SDFs provide a stronger toler-
ance than the parametric curves to slight misalignments
during the alignment process of the training data since
the values of neighboring pixels are highly correlated
in SDFs. The second fact is that this intrinsic shape
representation does not constraint to solve the contour
point-wise correspondence problem.
From a geometric point of view, the PCA analysis de-
termines the best orthonormal basis {e1...em} of Rm

to represent a set of n points {φ1...φn} in the sense of
the least squares fitting [40]. In our work, a SDF φj is
represented by N q samples (q is the number of dimen-
sions and N the number of samples for each dimension),
hence m = N q. In the PCA, a point φj is represented

by the formula: φj = φ +
∑m

i=1 αjiei + Rj = φ̂j + Rj

where φ is the geometric average of {φj}j and Rj is the

distance between the point φj and φ̂j , the orthogonal
projection of the vector φj into the space spans by the
basis {ei}i.
The PCA aims at finding out the vectors {ei}i which
minimize the quadratic error ε =

∑n
j=1 ‖Rj‖2 under the

constraint that these vectors form an orthonormal basis
in Rm . These vectors are given by the eigenvectors of
the covariance matrix Σ = 1

nMM> where M is a ma-
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trix which column vectors are the n centered training
SDF φj . The vectors {ei}i correspond to the principal
variation directions of the set of n points. They are
the principal components. Moreover, the first p princi-
pal axes define a reduced p-dimensional vector space in
Rm equivalent to an hyper-plan minimizing the sum of
squared distances between this hyperplan and the set
of n points. It is important to note that the fitting
goodness of this p-D hyperplan in relation to the set of
points can be measured in percentage by the formula
β =

∑p
k=1 λk/

∑n
k=1 λk where λk are the eigenvalues of

Σ. It is possible to arbitrarly fix the fitting percentage
β and represent the data in a sub-vector space of dimen-
sion p. In practice, the importance of principal modes
of a training set strongly decreases because the training
data represent the same class of objects. Thus, only a
small number of eigenmodes is useful for our purpose.
These p principal components are sorted in a matrix
Wp. Thus, the projected data φ̂ in the p-D space of a
data φ in Rm is given by the following equations:

{

φ̂ = Wpxpca + φ,

xpca = W>
p (φ − φ),

(7)

where xpca is the vector of eigencoefficients. Finally, if
we suppose that the probability density funtion (PDF)
of the training set is a Gaussian function then the prob-
ability distribution of φ̂(xpca) is

P (φ̂(xpca)) =
1

(2π)p/2|Λp|1/2
exp(−1

2
x>

pcaΛ
−1
p xpca), (8)

where Λp is a diagonal matrix containing the first p
eigenvalues.

3. A VARIATIONAL MODEL FOR IMAGE
SEGMENTATION WITH STATISTICAL

SHAPE KNOWLEDGE AND
BOUNDARY-BASED INFORMATION

3.1. The Proposed Segmentation Model

In [41], we have formulated a new energy functional
which is minimized once the active contour has cap-
tured high image gradients and a shape compatible with
the statistical model of the object of interest. This
functional is actually an extension of the work of Chen
et al [35, 25] where we have integrated the statistical
shape model of Leventon et al [22]. The proposed en-
ergy to achieve image segmentation with a statistical

shape prior is:

F1 = βbFboundary(C) + βsFshape(C,xpca,xT ), (9)

where Fboundary =

∮ 1

0

g(|∇I(C(q))|)|C ′(q)|dq, (10)

Fshape =

∮ 1

0

φ̂2(xpca, hxT
(C(q)))|C ′(q)|dq. (11)

In these definitions, g is the edge detecting function,
φ̂ is a shape function provided by the PCA (7) over
the training SDFs of the object to segment, xpca is the
vector of PCA eigencoefficients, hxT

is an element of
a group of geometric transformations which xT is the
vector of parameters, and βb, βs are arbitrary positive
constants that balance the contributions of the bound-
ary term and the shape term.

3.2. The Shape Term Fshape

Fshape is a shape-based functional depending on the ac-
tive contour C, the vector of PCA eigencoefficients xpca

and the vector of geometric transformations xT . This
functional evaluates the shape difference between the
contour C and the zero level set Ĉ of the PCA shape
function φ̂. It is an extension of the shape-based term of
Chen et al [35, 25] where we have integrated the statis-
tical shape model of Leventon et al [22]. If we consider
a rigid transformation with the scale parameter equal
to one, the function φ̂2 at the point C(q) is equal to

φ̂2(xpca, hxT
(C(q))) '

‖ Ĉxpca
(pmin) − hxT

(C(q)) ‖2
2 . (12)

The equality is not strict since the shape function φ̂
is not a SDF as Leventon noticed [22, 32]. However,
the PCA applied on registred SDFs of a training set
produces shape functions very close to a SDF. Figure 3
gives an illustration of the function φ̂2. If we desire to
get a strict equality in Equation (12), we must preserve
the shape prior function φ̂ as a SDF. Two solutions are
possible, either the shape function is projected in the
SDF space by redistancing φ̂ as a SDF or the framework
of G. Charpiat et al. [24, 42] can be employed to define
a mean and principal modes of variation for distance
functions by PDEs and using [43] for preserving SDFs.

Finally, Fshape is obtained by integrating φ̂2 along the
active contour, which defines the shape similarity mea-
sure equivalent to the sum of square differences (SSD).
The minimization of Fshape allows us to increase the
shape similarity between the active contour and the
shape model. The functional is minimized with the cal-
culus of variations and the gradient descent methods
which provides three flows acting on the curve C, the
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φ̂2(xpca, hxT
(C(q)))

Ĉxpca

hxT
(C(q))

Ĉxpca (pmin)

hxT
(C)

Fig. 3. Interpretation of the function
φ̂2(xpca, hxT

(C(q))): the square shape function at
the contour point C(q) is approximatively equal to
the square Euclidean distance between the contour
point hxT

(C(q)) under a geometric transformation and
the closest point Ĉxpca

(pmin) on the zero level set of

φ̂(xpca)

vector of eigencoefficients xpca and the vector of geo-
metric transformations xT . The flow minimizing Fshape

w.r.t. the curve C is the classical flow of [26]:






∂tC(t, q) =

(φ̂2κ− < ∇φ̂2,N >)N in ]0,∞[×[0, 1],
C(0, q) = C0(q) in [0, 1].

(13)

The flows minimizing Fshape w.r.t. the vector of eigen-
coefficients xpca are:

{

dtxpca(t) = −2βs

∫ 1

0
φ̂∇xpca

φ̂ |C ′|dq in Ωpca,
xpca(t = 0) = xpca

0
in Ωpca.

(14)

with ∇xpca
φ̂ =







e1
pca

...
ep

pca






, (15)

where ei
pca the ith principal component of the PCA

model, Ωpca = [−3λ1, 3λ1] × ... × [−3λp, 3λp] and λi is
the eigenvalue of the ith principal component. And the
flows minimizing Fshape w.r.t. the vector of geometric
transformations xT are:






dtxT (t) =

−2βs

∫ 1

0
φ̂ < ∇φ̂,∇xT

hxT
(C) > |C ′|dp in ΩT ,

xT (t = 0) = xT0
in ΩT .

(16)

In (13), (14) and (16), the function φ̂ is evaluated at
(xpca, hxT

(C(q)). In our work, we have considered the

rigid and the affine transformations:

hxr
T

: x → h(s,θ,T )(x) = sRθx + T, (17)

hxa
T

: x → h(sx,sy,θ,T,sh)(x) = RscRθRshx + T, (18)

where Rsc =

(

sx 0
0 sy

)

,

Rθ =

(

cos θ sin θ
− sin θ cos θ

)

and Rsh =

(

1 sh

0 1

)

. (19)

The vector of rigid transformations xr
T is composed of

a scale parameter s, an angle of rotation θ and a vec-
tor of translations T and the vector of affine transfor-
mations xa

T is composed of two scale parameters sx in
x-direction and sy in y-direction, an angle of rotation
θ, a shearing parameter sh and a vector of translations
T . xr

T lies thus in ΩT = [0, 256]× [−π, π]× [−256, 256]2

and xa
T in ΩT = [0, 256]2 × [−π, π] × [−256, 256]2 ×

[−128, 128]. In our implementation, we have consid-
ered the same value for both scale parameters, i.e.
sx = sy = s.
As a consequence, the gradient term ∇xT

hxT
in (16)

depending on geometric transformations is

∇xr
T
hxr

T
(x) =









∂h
x

r
T

∂s (x) = Rθx
∂h

x
r
T

∂θ (x) = s∂θRθx
∂h

x
r
T

∂T (x) = 1









and (20)

∇xa
T
hxa

T
(x) =













∂h
x

a
T

∂s (x) = RθRshx
∂h

x
a
T

∂θ (x) = s∂θRθRshx
∂h

x
a
T

∂sh
(x) = sRθ∂sh

Rshx
∂h

x
a
T

∂T (x) = 1













. (21)

Next, we re-write the previous equations in a vari-
ational level set formulation as presented in [44, 25].
The level set approach of [44], rather than [26, 27, 28],
is used for proving existence of solutions minimizing
our energy functional. The level set formulations of the
functional (11) and the system of equations (13), (14)
and (16) are:

Fshape =

∫

Ω

φ̂2(xpca, hxT
(x))|∇ϕ|δ(ϕ)dΩ. (22)



















∂tϕ(t, x) =
(

φ̂2κ|∇ϕ|− < ∇φ̂2,∇ϕ >
)

δ(ϕ) in ]0,∞[×Ω,

ϕ(0, x) = ϕ0(x) in Ω,
δ(ϕ)
|∇ϕ|∂Nϕ = 0 on ∂Ω.

(23)







dtxpca(t) =

−2βs

∫

Ω
φ̂∇xpca

φ̂|∇ϕ|δ(ϕ)dΩ in Ωpca,
xpca(t = 0) = xpca

0
in Ωpca.

(24)







dtxT (t) =

−2βs

∫

Ω
φ̂ < ∇φ̂,∇xT

hxT
> |∇ϕ|δ(ϕ)dΩ in ΩT ,

xT (t = 0) = xT0
in ΩT .

(25)
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The steady-state solution of equation (23) allows us
to match the active contour shape into any shape prior
provided by the PCA model. This shape matching
has two main advantages. Firstly, it is independant
of the contour parametrization because of the intrinsic
level set representation. That means that the contour
point-wise correspondance problem is replaced by a grid
point-wise intensity correspondance which is easier to
solve. Secondly, it is more accurate than parametrized
shape matching since the degree of deformation of level
set functions is higher. Figure 4 shows two curves
matching.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Minimization of Fshape with the flow (23), xT

and xpca being fixed. Active contour is in solid line and
the shape prior in dotted line. Figures (a)-(c) show the
matching of a cat (initial active contour) into a cow
(shape prior). Figures (d)-(f) present the matching of
a circle into a hand.

The steady-state solution of the system of equations
(24) and (25) allow us to register the zero level set of
the shape function with the active contour. This means
that we can use the shape function of variables xpca and
xT as a registration functional that permits to register
the shape prior onto any shape represented by the active
contour. Figures 5 and 6 shows some affine registrations
and Figure 7 presents an affine and shape registration.

3.3. Evolution Equations Minimizing The Func-
tional F1

In this section, we compute the system of coupled equa-
tions which steady-state solution gives a minimum of
the proposed functional (9) to realize the segmentation

Fig. 5. Minimization of Fshape with the flow (25), φ
and xpca being fixed. Figures present the affine reg-
istration of a prior shape in solid line into an active
contour in dotted line.

Fig. 6. Minimization of Fshape with the flow (25), φ
and xpca being fixed. Each column presents the affine
registration of a prior shape in solid line into an active
contour in dotted line. The first row shows the initial
positions of shapes and the second row the registered
shapes. This registration process works with shapes
having different local structures and with missing in-
formation.

process with prior shape. We directly write the system
of flows in the Eulerian formulation. If we define

f(x,xpca,xT ) ≡
βbg(|∇I(x)|) + βsφ̂

2(xpca, hxT
(x)), (26)

then, we have

F1 =

∫

Ω

f(x,xpca,xT )|∇ϕ|δ(ϕ)dΩ. (27)
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(a) (b) (c) (d) (e)

Fig. 7. Minimization of Fshape with flows (24) and (25), φ being fixed. Figure (a) presents a left ventricle taken
from a training set of left ventricles. Figure (b) shows in dotted line the left ventricle of Fig.(a) changed by an
affine transformation and an initial shape prior in solid line. Figures (c-d) represent the evolution of the registration
process according to the geometric trnsformations xT and the PCA model xpca. Finally, figure (e) displays the
registration of both shapes.

The system of flows is thus















∂tϕ(t, x) =
(fκ|∇ϕ|− < ∇f,∇ϕ >) δ(ϕ) in ]0,∞[×Ω,

ϕ(0, x) = ϕ0(x) in Ω,
δ(ϕ)
|∇ϕ|∂Nϕ = 0 on ∂Ω.

(28)







dtxpca(t) =

−2βs

∫

Ω
φ̂∇xpca

φ̂|∇ϕ|δ(ϕ)dΩ in Ωpca,
xpca(t = 0) = xpca

0
in Ωpca.

(29)







dtxT (t) =

−2βs

∫

Ω
φ̂ < ∇φ̂,∇xT

hxT
> |∇ϕ|δ(ϕ)dΩ in ΩT ,

xT (t = 0) = xT0
in ΩT .

(30)

We prove in appendix that a solution (at least) mini-
mizing our energy functional F1 exists in the space of
functions of bounded variation. This allows to say that
our segmentation model is well-posed.

3.4. Implementation issues

Concerning the PCA, the first stage consists on aligning
training curves of the object of interest. This is realized
with the shape similarity measure of Chen et al. [35,
25]:

a(C1, C
new
j ) = aera of (A1 ∪ Cnew

j − A1 ∩ Anew
j )

for 2 ≤ j ≤ n, (31)

where A1 and Anew
j denote the interior regions of the

curves C1 and Cnew
j , Cnew

j = sjRθj
Cj + Tj and n is

the number of training curves. C1 and Cj are aligned
when the measure a is minimized with the appropriate
values s?

j , θ?
j and T ?

j . These values are computed with
a genetic algorithm [45] as optimization process. And
the SDFs of the aligned training curves are generated
with the fast algorithm described in [46].

The second stage of the PCA realizes the singular
values decomposition with the code provided by the
Numerical Recipies [47] on the matrix Σdual = 1

nM>M
(see section 2.4 for notations) to extract the n eigen-
values ei,dual

pca and the eigenvectors λi,dual
pca . The PCA

performed on Σdual rather than Σ gives fast and
accurate results and the eigenvectors ei

pca and the

eigenvalues λi
pca are given by ei

pca = Mei,dual
pca and

λi
pca = λi,dual

pca .

Concerning the evolution equations (28), (29) and (30),
they are numerically solved by iterating the following
stages until convergence is reached:

1. Computation of the shape function φ̂(xpca,xT )
by using the formula (7) and by performing the
rigid and affine transformations (scaling, rotation,
translations and shearing) with the polynomial B-
splines interpolation method [48].

2. The term ∇xpca
φ̂ is given by the PCA model, see

equation (15), ∇φ̂ uses a central difference sheme
and ∇xT

hxT
is computed according to equations

(20) and (21).

3. Discretization of terms |∇φ| and < ∇f,∇φ >
with the Osher-Sethian’s numerical flux function
[11, 5, 25]. Computation of curvature uses stan-
dard central difference schemes. And we have ap-
proximated the Dirac function δ and the Heaviside
function H by slightly regularized versions like in
[44, 25].

4. Calculation of the temporal derivative is done with
a forward difference approximation.

5. Redistancing the level set function every iteration
with the fast marching method of Adalsteinsson
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and Sethian [49].

3.5. Experimental Results

3.5.1. Synthetic Images

We have tested our model in 2-D synthetic images with
a training set of ellipses. We have generated a set of
30 ellipses by changing the size of a principal axis with
a Gaussian PDF. Then we have applied the PCA on
the training SDFs of ellipses and we have obtained one
principal component that fits at 98% the set of 30 SDFs
of ellipses. Figure 8 shows the aligned training ellipses
and the shape function corresponding to the mean and
the eigenmode of variation of the training set.

(a)

(b) −2λ (c) Mean (d) 2λ

Fig. 8. Figure (a) presents the 30 aligned training el-
lipses, figure (c) shows the mean value and (d),(e) the
eigenmode of variation of ellipses. The zero level set of
the shape function φ̂ is plotted in solid dark line.

In the first experiment, we want to segment an ellipse
which is partially cut. Figure 9 presents the classical
active contour without a shape prior and figure 10 with
a shape prior taking βb = 1, βs = 1/3 and ∆t = 0.6.
We can see on figure 10 that the active contour has
captured high image gradients and a shape belonging
to the statistical model which best fits the ellipse in the
image.
In the second experiment, we want to segment an el-
lipse which is partially occluded by a vertical bar and
which present irregular boundaries. Figure 11 presents
the classical active contour without a shape prior and
figure 12 with a shape prior choosing βb = 1, βs = 1/3
and ∆t = 0.6.

Fig. 9. Evolution of an active contour without a shape
prior.

Fig. 10. Evolution of an active contour (in solid line)
with a shape prior (in dotted line).

We have showed with the two previous synthetic exam-
ples that our shape-based active contour model can seg-
ment objects with missing information, occlusion and
local shape deformations.

3.5.2. Real Images

We have also experimented our model in 2-D natural
images. We have employed 2-D medical images. We
have used 45 2-D images of left ventricles to build our
statistical shape model. These 2-D images are extracted
from several slices of T1-Weighted Magnetic Resonance
images of healthy voluntaries (Figure 13). We have ap-
plied the PCA and we have obtained three principal
components that fit at 88.2% the set of 45 SDFs of ven-
tricles. Figure 14 shows the aligned training ventricles
and the shape function corresponding to the mean and
the three main eigenmodes of variation of the training
set.
In this experiment, we want to segment the left ven-
tricle. Figure 15 presents the evolving active contour
without a shape prior and figure 16 with a shape prior
taking βb = 1, βs = 2 and ∆t = 0.4. We observe on
Figure 16 that the active contour has well captured the
left ventricle whereas the initial contour was around the
two ventricles on Figure 16(a). This segmentation re-
sult could not be obtained without a shape prior with
the same initial contour as we can observe on Figure 15.
The segmentation model has also provided the shape of
the statistical model which best fits the ventricle ly-
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(a) (b) (c) (d) (e)

Fig. 15. Evolution of an active contour without a shape constraint.

(a) (b) (c) (d) (e)

Fig. 16. Evolution of an active contour (in solid line) with a shape prior (in dotted line).

Fig. 11. Evolution of an active contour without a shape
prior.

ing in the image and its associated probability given by
equation (8).

3.6. Using Other Segmentation Models

In the framework of variational models and PDEs,
it is possible to use other segmentation models such
as region-based segmentation methods developped in
section 2.2. The easiest way is to linearly com-
bine energy functionals or PDEs directly. For ex-
amples, if we want to use the statistiscal measures
of homogeneity introduced by Jehan-Besson et al.
[19], the new functional to minimize is F new =
F1(C,xpca,xT ) + λRFR(Ωin,Ωout, C) or if we want
to employ the Mumford-Shah approach of Chan and
Vese [17, 18], the energy is F new = F1(C,xpca,xT ) +

Fig. 12. The first row presents the evolution of an ac-
tive contour (in solid line) with a shape prior (in dotted
line). The second row is a zoom on the left point of
the ellipse to show that the active contour is able to
segment local structures even with the shape prior.

λMSFMS
CV (uin, uout, C). The PDE minimizing F new

is obviously a linear combination of PDEs minimizing
each term of F new.

In our work, we have decided to integrate a region-
based segmentation model into the shape prior rather
than the active contour. The main raison is based on
the observation of Figures 15 and 16 where we want to
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Fig. 13. Three T1-Weighted Magnetic Resonance im-
ages of brain.

(a)

Fig. 14. Figure (a) presents the 45 aligned training
ventricles, the middle column is the mean value and
each row presents an eigenmode of variation of ventri-
cles. The zero level set of the shape function φ̂ is plotted
in solid dark line.

segment the left ventricle with an initial contour around
both ventricles. If the region homogeneity criterium is
employed on the active contour, the region-based force
on the right ventricle is opposed to the shape-based
force since the shape prior pulls the active contour in-
side whereas the region-based term constraints the ac-
tive contour to stay on the edges of the right ventricle
to keep a homogeneous region. Of course, we want to
avoid this situation. A solution is to put the region

homogeneity criterium into the shape prior to drive it
towards a smooth intensity region which has the shape
of interest.

In the next section, we develop the introduction of the
region-based criterium into our segmentation model.

4. INTRODUCTION OF REGION
HOMOGENEITY FEATURES IN THE

SEGMENTATION MODEL

4.1. A Functional Based on the Mumford-
Shah’s Model

In this section, we employ the Mumford-Shah func-
tional (2) to segment a smooth region which shape is a
priori known by the PCA model. We have modified the
model of Chan and Vese [18], presented in section 2.2,
to integrate the prior shape model and the geometric
transformations:

Fregion(xpca,xT , uin, uout) =

∮

Ĉ(xpca,xT )

ds+

∫

Ωin(xpca,xT )
(|u0 − uin|2 + µ|∇uin|2)dΩ +

∫

Ωout(xpca,xT )
(|u0 − uout|2 + µ|∇uout|2)dΩ, (32)

where the curve Ĉ is the zero level set of the shape
function φ̂ computed by the PCA on a training set of
the object of interest. The function φ̂ allows to define an
image partioning into two regions Ωin and Ωout which
common boundary is Ĉ:







Ωin(xpca,xT ) = {x ∈ Ω | φ̂(x,xpca,xT ) > 0},
Ωout(xpca,xT ) = {x ∈ Ω | φ̂(x,xpca,xT ) < 0},
Ĉ(xpca,xT ) = {x ∈ Ω | φ̂(x,xpca,xT ) = 0}.

(33)

The segmentation problem defined in equation (3), sec-
tion 2.2, depending on the active contour represented
by ϕ is now changed into a segmentation model de-
pending on the vector xpca of shape eigencoefficients
and the vector xT of geometric transformations. In
our work, we have cancelled the smoothing term,

∮

Ĉ
ds,

since shapes generated by the PCA are enough smooth.
We re-write the functional Fregion with the shape func-

tion φ̂:

Fregion(xpca,xT , uin, uout) =
∫

Ω
ΘinH(φ̂(xpca,xT )dΩ +

∫

Ω
ΘoutH(−φ̂(xpca,xT )dΩ, (34)

where Θr = |u0 − ur|2 + µ|∇ur|2 and r = in or out.
The modified Mumford-Shah’s functional is minimized
using gradient flows for xpca and xT and the Euler-
Lagrange equations for uin and uout. Thus, the flows
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minimizing (34) w.r.t. x which can be either xT or xpca

are:

dtx =

∫

Ω

(Θin − Θout)
∂φ̂

∂x
δ(φ̂)dΩ, (35)

with

{

∂φ̂
∂xT

=< ∇φ̂,∇xT
hxT

>,
∂φ̂

∂xpca
= ∇xpca

φ̂.

And the Euler-Lagrange equations of (34) w.r.t. uin

and uout are:

{

uin − u0 = µ∆uin in {φ̂ > 0},
uout − u0 = µ∆uout in {φ̂ < 0}. (36)

We have noticed that another segmentation method
based on the Mumford-Shah functional and the PCA
model of Leventon et al. have already been proposed
by Tsai et al. [34] but for a reduced version of the
Mumford-Shah model. They actually have employed
the piecewise constant case of the Mumford-Shah func-
tional, proposed by Chan and Vese [17], whereas we
have used the piecewise smooth case [18]. Our model
gives better segmentation results since it avoids possible
intensity bias due to the inhomogeneity of the outside
region, i.e. the background, with respect to the inside
region, the object of interest.

4.2. Implementation Issues

Minimization of Fregion, with equations (35) and (36),
is numerically done by iterating the following stages
until convergence is reached:

1. Computation of the shape function φ̂(xpca,xT ) us-
ing formula (7) and polynomial B-splines interpo-
lation [48] for spatial transformations. We have
approximated the Dirac function δ and the Heavi-
side function H as in [44, 25].

2. Discretization of ∂φ̂
∂x

using a central difference

sheme for ∇φ̂, equations (20), (21) for ∇xT
hxT

and
equation (15) for ∇xpca

φ̂.

3. Functions uin and uout are computed by a Gaus-
sian filtering in {φ̂ > 0} and {φ̂ < 0} since
ur = u0 + µ∆ur = G(

√
2µ) ∗ u0 + O(µ), where r

is in or out and G is the Gaussian function. Then
Θr are estimated.

4. Computation of the temporal derivative is done
with a forward difference approximation.

4.3. Experimental Results

We have tested the functional Fregion by segmenting
several ellipses in different situations presented on Fig-
ure 17. This segmentation model is so able to process
missing information, occlusions and noise. However,
this segmentation method can not handle local struc-
ture deformations as we see on Figure 17(f) with the
ellipse which presents irregular boundaries. The model
hasn’t captured local edge variations since it works with
global shapes provided by the PCA. If we want to seg-
ment the entire boundary, with local structures, we
must combine this global approach with local method
as the classical edge-based active contour.
We have also employed this model for segmenting the
left ventricle in brain as we can see on Figure 18.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 17. Minimization of Fregion with the flow (35) and
the equation (36). The first row presents the evolution
of the segmentation process of an ellipse partially cut.
The second row is the segmentation of an occluded el-
lipse. And the third row shows the segmentation of a
noisy ellipse.
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Fig. 18. Segmentation of the left ventricle by minimiz-
ing Fregion with the flow (35) and the equation (36).

4.4. Combining Boundary-based, Shape-based
and Region-based Functionals

In sections 3.1 and 3.2, we have defined a shape-based
functional Fshape which evaluates the similarity be-
tween the active contour shape and the shape prior
given by the PCA of the object to segment. In this
section, we have formulated a region-based functional
Fregion which allows us to drive globally the shape prior
towards a homogeneous intensity region. We now lin-
early combine these two types of functionals with the
boundary-based functional Fboundary, which captures
edges, to get a functional for segmenting objects with
a geometric shape prior and local and global image in-
formation:

F2 = βbFboundary(C) + βsFshape(C,xpca,xT ) +

βrFregion(xpca,xT , uin, uout). (37)

4.5. Evolution Equations Minimizing The Func-
tional F2

In this section, we compute the system of coupled gra-
dient flows in the implicit (Eulerian) formulation of
[44, 25] which steady-state solution provides the min-
imimum of the proposed functional (37):

F2 =

∫

Ω

f(x,xpca,xT )|∇ϕ|δ(ϕ)dΩ +

βr

∫

Ω

(

ΘinH(φ̂(xpca,xT )) + ΘoutH(−φ̂)
)

dΩ. (38)















∂tϕ(t, x) =
(fκ|∇ϕ|− < ∇f,∇ϕ >) δ(ϕ) in ]0,∞[×Ω,

ϕ(0, x) = ϕ0(x) in Ω,
δ(ϕ)
|∇ϕ|∂Nϕ = 0 on ∂Ω.

(39)







dtxpca(t) = −2
∫

Ω
∇xpca

φ̂(2βsφ̂|∇ϕ|δ(ϕ)+

βr(Θin − Θout)δ(φ̂))dΩ in Ωpca,
xpca(t = 0) = xpca

0
in Ωpca.

(40)















dtxT (t) = −2
∫

Ω
< ∇φ̂,∇xT

gxT
>

(2βsφ̂|∇ϕ|δ(ϕ)+

βr(Θin − Θout)δ(φ̂))dΩ in ΩT ,
xT (t = 0) = xT0

in ΩT .

(41)

{

uin − u0 = µ∆uin in {φ̂ > 0} ∩ Ω,

uout − u0 = µ∆uout in {φ̂ < 0} ∩ Ω.
(42)

Existence of a solution (at least) minimizing our energy
functional F2 is shown in appendix.

4.6. Experimental Results

We have employed our complete segmentation model
for segmenting the left ventricle, Figure 19 taking βb =
1, βs = 2, βr = 0.1, µ = 3 and ∆t = 0.4. Even if we get
the same final result than in section 3.5.2, i.e. without
the region-based term, the evolution process is different.
Firstly, it is more robust to noise and initial position of
the shape prior. And secondly, the convergence is faster
since more image information is taken into account dur-
ing the segmentation process. Observe the difference
between the Figure 16(d) and Figure 19(d). In the
first figure, the boundary-based force is weaker than the
shape-based force, so the active contour does not stay
on the border and go inside the ventricle. Whereas in
the second figure, the region-based information allows
us to drive the shape prior directly towards the correct
homogeneous region.

5. DISCUSSION

In this paper, we have proposed a new variational model
to solve the segmentation problem of objects of interest
using local and global image information and a prior
geometric shape given by the statistical model of PCA.
We have seen that active contours, which result from
the minimization of the energy functional (37) is able to
capture high image gradients, a shape of the statistical
model which best fits the segmented object providing
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(a) (b) (c) (d) (e)

Fig. 19. Segmentation of the left ventricle by minimizing the functional F2 with flows (39), (40), (41) and equation
(42).

robustness against missing information due to clutter-
ing, occlusion and gaps, and a homogeneous intensity
region. Experimental results have showed that the abil-
ity of active contours to segment any natural structure
is preserved thanks to the implicit/level set formula-
tion of active contour. This is one of the main ad-
vantage of choosing this contour representation rather
than explicit/parametrized representation which pro-
vides less freedom of deformation. The introduction of
the Mumford-Shah functional, which implicitly means
that only smooth intensity objects are segmented, has
increased the robustness of the model w.r.t. initial con-
ditions, noise and complex background. Our model can
also take advantages of other variational segmentation
models such as [19, 18].
As we previously said, the proposed model is partially
an extension of the model of Chen et al. [25] where we
have introduced the statistical shape model of Leven-
ton et al. [22]. One can wonder why to use the model
of Chen to compute the vector xT of spatial geometric
transformations and the vector xpca of eigencoefficients
since the model of Leventon already does by MAP esti-
mation. The key idea of this choice is to use the correct
mathematical formulation of Chen to solve the segmen-
tation problem. Indeed, our proposed model is math-
ematically justified since we prove the existence of a
solution in the space of function of bounded variation
(in appendix).
In [23], Paragios and Rousson have proposed a level
set representation of shape from a training set which is
able to capture global and local shape variations. Their
shape model generates more different shapes than the
PCA but the shape vector xpca, which is composed by
only p unknown variables in our approach, is replaced
by a local deformation field to evaluate on a δ-band
around the zero level set of the shape function.
In our segmentation model like in [22, 25, 23], the ge-
ometric shape model is introduced through a shape
registration between the prior shape and the active

contour. Thus the proposed segmentation/registration
model computes the vector of spatial transformations
wich can be used with other segmentation results to
solve the important image registration problem. For
example in [25, 50], image registration is employed in
order to align time series images to minimize the effect
of motion on the fMRI signal. Our model also computes
the shape vector xpca which gives the probability that

the final shape function φ̂(xpca) belongs to the class of
the training set thanks to the equation (8). In pratice,
we have noticed that the optimization procedure, i.e.
the gradient descent method, applied on xT and xpca

strongly depends on discretization steps to reach the
correct solution in a reasonable time.
In [37, 38], Cremers et al. define two shape statistical
energies invariant w.r.t. rigid transformation and shape
parameters. In [37], they use the assumption that the
PDF of the training set is a Gaussian function which
leads to the Mahalanobis distance by taking the log-
function of the PDF. Cremers et al. use parametrized
contours in their model but the Mahalanobis distance
can also be applied to contours represented by level set
functions as proposed in [51]. Estimating or not the
registration parameters xT and xpca depends on two
questions: does the current application need pose and
shape parameters and are affine or non-rigid transfor-
mations necessary? If the answer is yes for one of these
questions, the estimation of pose ans shape parameters
will be imperative.
The PCA aims at defining two important quantities,
the mean and the variance, which are used to estimate
the PDF of the training set of the object to segment.
These two quantities can define a uniform PDF and
also a Gaussian PDF, which is generally preferred. But
the Gaussian function to represent the true underly-
ing PDF of the training set can be very inappropriate
(in presence of tumors in T1-WMR images for exam-
ple). Future work is naturally based on the extension
of the PCA to more elaborated techniques such as non-

15



parametric models.
Finally, the proposed model can capture only one ob-
ject which is limited since we lose the powerful property
of the level set approach which can segment several ob-
jects simultaneously. A first solution would consist on
associating structures by coupling the evolution equa-
tions.

Appendix: Existence Of Solution

For Our Minimization Problems

This section deals with the mathematical studies of

min
ϕ,xpca,xT

{F1 =

∫

Ω

(

βbg(x) + βsφ̂
2(x,xpca,xT )

)

|∇H(ϕ)|} (43)

and

min
ϕ,xpca,xT ,uin,uout

{F2 =

∫

Ω

(

βbg(x) + βsφ̂
2(x,xpca,xT )

)

|∇H(ϕ)| +
βrFregion(xpca,xT , uin, uout)}. (44)

We follow the demonstration of Chen et al. in [35, 25]
and Vese and Chan [52] to prove the existence of a
minimizer for our proposed minimization problems
using the direct method of the calculus of variations
and compactness theorems on the space of functions
with bounded variation.
The minimization problem is considered among char-
acteristic functions χE of sets E = {x ∈ Ω|ϕ(x) ≥ 0}
with bounded variation. The vector of PCA eigen-
coefficients xpca = (xpca

1
, ...,xpcap

) and the vector
of geometric transformations xT = (s, θ, T, sh) are
respectively defined on Ωpca and ΩT . Functions uin

and uout are in C1(Ω) since ur is a smoothed version
of the original image u0 (ur = u0 + µ∆ur is the
discretized version of the linear heat diffusion equation
∂tur = ∆ur with ur(0) = u0).

We remind some definitions and theorems intro-
duced in Evans [2], Giusti [3], Chen [35, 25], Chan and
Vese [52] and Ambrosio [53].

Definition 1: Let Ω ⊂ R
N be an open set and

let f ∈ L1(Ω). The total variation norm of f is defined
by

TV (f) =

∫

Ω

|∇f | = sup
φ∈Φ

{∫

Ω

f(x)div φ(x)

}

, (45)

where Φ =
{

φ ∈ C1
0 (Ω, RN )| |φ(x)| ≥ 1, on Ω

}

. (46)

Definition 2: A function f ∈ L1(Ω) is said to have
bounded variation in Ω if its distributional derivate sat-
isfies TV (f) < ∞. We define BV (Ω) as the space of all
functions in L1(Ω) with bounded variation. The space
BV (Ω) is a Banach space, endowed with the norm:

‖f‖BV (Ω) = ‖f‖L1(Ω) + TV (f). (47)

Theorem 1 A measurable subset E of R
N has finite

perimeter in Ω if and only if the characteristic func-
tion χE ∈ BV (Ω). We have perΩ(E) = TV (χE) =
∫

Ω
|∇χE | < ∞.

Definition 3: Let Ω ⊂ R
N be an open set and let

f ∈ L1(Ω) and α(x) be positive valued continuous and
bounded functions on Ω. The weighted total variation
norm of f is defined by

TVα(f) =

∫

Ω

α(x)|∇f | = sup
φ∈Φα

{∫

Ω

f(x)div φ(x)

}

, (48)

where Φα =
{

φ ∈ C1
0 (Ω, RN )| |φ(x)| ≥ α(x), on Ω

}

. (49)

If a function f has a finite weighted total variation norm
in Ω then it also belongs to BV (Ω).

Theorem 2 Let Ω ⊂ R
N be an open set with a Lip-

schity boundary. If {fn}n≥1 is a bounded sequence in
BV (Ω), then there exist a subsequence {fnj} of {fn}
and a function f ∈ BV (Ω), such that fnj → f strongly
in L1(Ω) and

TV (f) ≤ lim inf
nj→∞

TV (fnj). (50)

The following theorem is a generalization of the main
theorem of Chen [35, 25].

Theorem 3 Let Ω ⊂ R
N be an open set with a Lip-

schity boundary. If {fn}n≥1 is a bounded sequence in
BV (Ω) and if {αn}n≥1 is a sequence of positive val-
ued continuous functions which uniformly converges to
α on Ω, then there exist subsequences {fnj} of {fn} and
a function f ∈ BV (Ω) such that fnj → f strongly in
L1(Ω) and

TVα(f) ≤ lim inf
nj→∞

TVαnj
(fnj). (51)

Theorem 4 Let Ω be a bounded and open subset of R
N

and I be a given image with I ∈ L∞(Ω). The minimiza-
tion problem (43) re-writes in the following form

min
χE ,xpca,xT

{F1 =

∫

Ω

(

βbg(x) + βsφ̂
2(x,xpca,xT )

)

|∇χE |} (52)

has a solution χE ∈ BV (Ω), xpca ∈ Ωpca and xT ∈ ΩT .
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Proof: We use the direct method of the calculus of
variations:
(A) Let {χEn,xpcan,xT n}n≥1 be a minimizing se-
quence of (52), i.e.

lim
n→∞

F1(χEn,xpcan
,xT n) =

inf
χE ,xpca,xT

F1(χE ,xpca,xT ). (53)

(B) Since χEn is a sequence of characteristic functions
of En, then χEn(x) ∈ {0, 1} - a.e. in Ω. There exists
M > 0 such that ‖χEn‖L1(Ω) ≤ M , ∀n ≥ 1. Therefore,
χEn is a uniformly bounded sequence on BV (Ω).
Since {xpca}n and {xTn

}n are bounded sequences on
compact spaces ΩT and Ωpca, there exist subsequences
which converge to limits xpca and xT .

The integrant f(x,xpca,xT ) = βbg + βsφ̂
2 is positive

and bounded because both terms g and φ̂2 are bounded
on Ω. Since the PCA is applied on continuous functions
(SDFs) then functions φ̂ and f are continuous functions
and fm(x) = f(x,xTm

,xαm
) uniformly converges to f

on Ω.
By theorem 3, there exists a subsequence of χEn which
converges to a function χE strongly in L1(Ω).
(C) Moreover , theorem 3 also states that

∫

Ω

f |∇χE | ≤ lim inf
nj→∞

∫

Ω

fnj |∇χEnj
|, (54)

this implies that χE ∈ BV (Ω) and χE , xpca, xT are
minimizers of (52).

Definition 4: A function f ∈ BV (Ω) is a spe-
cial function of bounded variation if its distributional
derivative is given by

|Df | = TV (f) +

∫

Ω∩Sf

JfdHN−1, (55)

where Jf is the jump part defined on the set of points
Sf and HN−1 as in section 2.2 is the (N -1)-dimensional
Hausdorff measure. The space of special functions of
bounded variation SBV (Ω) is a Banach space, endowed
with the norm:

‖f‖SBV (Ω) = ‖f‖L1(Ω) + |Df |. (56)

Theorem 5 Let Ω be a bounded and open subset of R
N

and I be a given image with I ∈ L∞(Ω). The minimiza-
tion problem (44) re-writes in the following form

inf
χE ,xpca,xT ,uin,uout

{F2 =

∫

Ω

(

βbg(x) + βsφ̂
2(x,xpca,xT )

)

|∇χE | +
βrFregion(xpca,xT , uin, uout)} (57)

has a solution χE ∈ BV (Ω), xpca ∈ Ωpca, xT ∈ ΩT and
uin, uout ∈ C1(Ω).

Proof: For (B), the same method of Theorem 4 is used
and for (C), we employ the demonstration of Vese and
Chan [52]:
(A) Let {χEn,xpcan

,xTn
, uinn

, uoutn
}n≥1 be a minimiz-

ing sequence of (57), i.e.

lim
n→∞

F2(χEn,xpcan
,xTn

, uinn
, uoutn

) =

inf
χE ,xpca,xT ,uin,uout

F2(χE ,xpca,xT , uin, uout). (58)

(B) for the same reasons than in Theorem 4 and with
Theorem 3, we have

∫

Ω

f |∇χE | ≤ lim inf
nj→∞

∫

Ω

fnj |∇χEnj
|. (59)

(C) In the region-based functional (34)

Fregion(xpca,xT , uin, uout) =
∫

Ω

(ΘinH(φ̂(xpca,xT )) + ΘoutH(−φ̂))dΩ, (60)

the function H(φ̂(xpca,xT )) is a characteristic function

χG of sets G = {x ∈ Ω|φ̂(x) ≥ 0}. So we have

Fregion(xpca,xT , uin, uout) =
∫

Ω

(ΘinχG(xpca,xT )) + Θout(1 − χG))dΩ (61)

and we can define the function u = uinχG + uout(1 −
χG). The minimizing sequence of (57) implies

lim
n→∞

Fregion(xpcan
,xTn

, uinn
, uoutn

) =

inf
xpca,xT ,uin,uout

Fregion(xpca,xT , uin, uout). (62)

Since the function χG continuously depends on vari-
ables xpca and xT , we have χG(xpcan

,xTn
) = χGn

and un = uinn
χGn + uoutn

(1 − χGn). According to
Ambrosio’s lemna [53], we can deduce that there is a
u ∈ SBV (Ω), such that a subsequence unj

converges to
u a.e. in BV − w∗ and

Fregion(xpca,xT , uin, uout) =

Fregion(u) ≤ lim inf
nj→∞

Fregion(unj
), (63)

which means that u is a minimizer of Fregion. Then,
combining (59) and (63), χE , xpca, xT , uin and uout

are minimizers of (57).
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C. Schnörr, “Diffusion snakes: Introducing statisti-
cal shape knowledge into the mumford-shah func-
tional,” International Journal of Computer Vision,
vol. 50(3), pp. 295–313, 2002.

[38] D. Cremers, T. Kohlberger, and C. Schnorr, “Non-
linear shape statistics in mumford-shah based seg-
mentation,” in European Conference on Computer
Vision, pp. 93–108, 2002.

[39] D.Cremers, “Statistical shape knowledge in varia-
tional image segmentation, ph.d thesis,” 2003.
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