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Introduction

The goal of these lectures is to describe a “structural” theory of quantum computation.
Quantum programs can be reasoned about at many different levels. They can be rea-
soned about numerically and algebraically, which involves specific calculations with
complex numbers and vector space notation. Programs can also be reasoned about
symbolically, by expressing them in a formal language and formulating axioms and
reasoning principles which apply to all programs. We term this latter approach the
“structural” approach, and it is the main topic of these lectures.

To allow symbolic reasoning, programs must be expressed in a formal language.
This language should be structured: large programs are built up from smaller ones by
means of syntactic operations, such as sequential or parallel composition or the intro-
duction of loops. A basic principle which should be enjoyed by a structured program-
ming language is the principle of compositionality, according to which the behavior of
a composite program should be uniquely determined by the behaviors of its parts. The
set of programs, under these structural operations, is then subject to some axioms and
equations. In many cases, these axioms and equations will be sufficient to reason about
a given quantum algorithm in a purely symbolic way.

There are several potential benefits to studying quantum computation in the context
of formal languages. First, the use of formal languages allows the creation of a meta-
theory: it allows one to quantify over all possible programs, rather than reasoning about
one program at a time. Also, the uniform construction of large programs from smaller
parts gives rise to a principle of reasoning about programs by induction.

Another potential benefit of this approach is the extension of known links between
logic and complexity theory. In the classical (i.e., non-quantum) world, there are many
such connections. For example, for many complexity classes (such as P, NP, etc.)
there exist logics which characterize these complexity classes precisely, in the sense
that a function is provably total in the logic if and only if it belongs to the given com-
plexity class. By studying quantum computing in terms of formal languages, one opens
the door to extending such results to quantum complexity classes.

The structural approach to quantum computing also offers the possibility to investi-
gate and employ new high-level language features and abstractions. Currently, it seems
that each newly discovered quantum algorithm relies on some particular and unique
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trick. Quantum computations are described and analyzed at the gate-level, which is
akin to reasoning in assembly language in the classical world. On the other hand, high-
level abstractions are useful in classical programming languages, because they allow
algorithms to be expressed in a “natural” style. Features such as data types, recur-
sion, higher-order functions, block structure, object orientation, and so forth, allow the
human programmer to achieve complex tasks by organizing them into understandable
units. Thus, high-level languages are easy to reason about, while compilers take care
of the low-level implementation. One might speculate that a similar benefit can be
achieved by introducing abstract features into quantum programming languages. How-
ever, little is currently known about the kinds of abstractions that would be useful in
this context.

Outline of the lectures

We briefly summarize the content of each of the eight lectures. Suggestions for further
reading are given at the end of lectures 4–8.

1. The QRAM model. After a brief review of the basic axioms of quantum compu-
tation, we describe the QRAM model of quantum computation due to Knill [4]. In the
QRAM model, the operation of a quantum device is controlled by a general-purpose
classical computer. Unlike in some other models of quantum computation, unitary op-
erations and measurements can be explicitly interleaved, and the associated classical
computations are made explicit.

2. Mixed states and density matrices. We define the notion of a mixed state as a
probability distribution on quantum states. It is important to note that a mixed state is
not a description of a physical state of a system, but rather of our knowledge about a
physical state. As such, the concept of a mixed state is a subjective concept. Mixed
states also arise in the description of non-closed quantum systems. The density matrix
formalism is a convenient notation for mixed states, and we show how the basic oper-
ations of quantum computation can be expressed in terms of their actions on density
matrices. It follows that two mixed states are indistinguishable from each other (by any
series of local operations) if they induce the same density matrix. For (partial) density
matrices A and B, we write A � B if B − A is hermitian positive, and we note that
this defines a partial order with least upper bounds of increasing chains. This partial
order is important in the description of loops and recursion in quantum programming
languages.

3. The quantum flow chart language. We describe a formal language for writing
quantum algorithms, the quantum flow chart language of [7]. In this language, every
program is seen as a function from inputs to outputs, mapping (in general) mixed states
to mixed states. The meaning of a program can be understood in more than one way:
(1) by running the program on an abstract machine such as the QRAM model, (2) by
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annotating the inputs of the program with indeterminate density matrices, then prop-
agating the density matrices downward following a simple set of rules, or (3) induc-
tively, by associating to each program fragment a denotation which is a linear function
of mixed states, and computing the denotation of composite programs from the de-
notations of their parts. Methods (1) and (3) work for all programs, whereas method
(2) only works for loop-free code. A semantics in the style of (1) is known as an
operational semantics, and style (3) is known as denotational semantics. All three
approaches coincide, in the sense that they calculate the same answers.

4. Completely positive maps and superoperators. We characterize those functions
from density matrices to density matrices which can arise as the denotation of a quan-
tum program. These functions are precisely the (partial) superoperators. A linear
function from matrices to matrices is called positive if it maps hermitian positive to
hermitian positive matrices. A function F is called completely positive if F ⊗ idn

is positive for all n; this means that F is positive as a blockwise operation. Finally,
a completely positive map is called a superoperator if it is trace-non-increasing. We
give a useful characterization of completely positive maps and superoperators in terms
of their so-called characteristic matrices, as well as another characterization known as
the Kraus Representation Theorem. For a more complete exposition of the topics of
lectures 1–4, see [7].

5. Basic category theory. Many potential denotational models of quantum compu-
tation (for instance, the category Hilb of finite-dimensional Hilbert spaces and linear
maps, the category CPM of signatures and completely positive maps, and the cate-
gory Super of superoperators) possess a symmetric monoidal structure with additional
properties. To study the axiomatics satisfied by these models, we introduce some basic
category theory. We introduce symmetric monoidal categories and their graphical cal-
culus. We then consider various extensions of symmetric monoidal categories: traced
monoidal categories, compact closed categories, strongly compact closed categories,
and categories with biproducts. For each of these classes of categories (except the last
one), we describe a graphical language. For a general introduction to category theory,
see [5].

6. Categorical semantics of quantum protocols. As we have argued in the discus-
sion of the quantum flow chart language and its semantics, reasoning about mixed-state
quantum processes takes place in the category CPM of completely positive maps.
Abramsky and Coecke [1] have shown that a large part of this reasoning can be gener-
alized to any strongly compact closed category with biproducts. The category CPM
is one example of such a category, but there are others (for instance, the category Rel
of sets and relations). We describe Abramsky and Coecke’s work, and we discuss how
the quantum teleportation protocol can be formalized in this framework. The point of
working axiomatically is that it allows one to say, for any particular program or proto-
col, precisely which additional axioms are needed for the protocol to work. Further, the
presence of the graphical languages for these categories yields a graphical formalism
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for reasoning about protocols, as opposed to the usual algebraic formalisms such as the
bra-and-ket notation. For more details, see [1].

7. The lambda calculus and the proof-as-programs paradigm. As noted in the
introduction, in the classical world there are important connections between logic and
complexity theory. One source of such connections is the so-called Curry-Howard iso-
morphism, also known as the proof-as-programs paradigm. It asserts that a logic can
be viewed as a programming language, and a programming language can be viewed
as a logic, by identifying formulas with types, and proofs with programs. We present
the simply-typed lambda calculus, which was introduced by Church and Curry in the
1930’s and 40’s. The lambda calculus can be seen as a basic higher-order programming
language, but which can also be seen as a system for writing proofs in propositional in-
tuitionistic logic. Thus, the lambda calculus illustrates the Curry-Howard isomorphism
in its most basic form. For a much more detailed introduction, see [3] or [6].

8. Linear logic and higher-order quantum computation. In this last lecture, we
describe an extension of the Curry-Howard isomorphism to quantum computation. We
present a lambda calculus for higher-order quantum computation due to Valiron [8].
An important issue in quantum programming languages is linearity, also known as the
no-cloning property: unlike classical information, quantum information cannot be du-
plicated. Thus, a quantum programming language must ensure that a qubit is uniquely
referenced. As shown by Valiron, the appropriate logic for a higher-order quantum
programming language is linear logic. Linear logic was introduced in the late 1980’s
by Girard as a resource-sensitive logic [2], and its proof theory has been extensively
studied. Linear logic is characterized by the fact that each assumption made in a proof
must be used exactly once (and thus, it cannot be “duplicated”). This is very different
from standard classical logic, where an assumption, once made, can be used as many
times as needed. In linear logic, duplicable assumptions are marked with the special
syntax !A. Under the Curry-Howard isomorphism, this gives rise to a type system for a
quantum lambda calculus where the type of every value determines whether that value
can be duplicated or not. Details about the higher-order quantum lambda calculus can
be found in Valiron’s forthcoming M.Sc. thesis. A preliminary version of his results
has also appeared in [8].
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