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Microarray data and differential analysis
Molecular biology central dogma

DNA molecule (gene)

|
transcription

↓

messenger RNA (transcript)

|
translation

↓

Protein (biological function)

“Definition”:

(
Expression level

of a gene

)
∝

(
number of copies

of mRNA in the cell

)
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Microarray technology

Aims to monitor the expression
level of several thousands of
genes simultaneously

1 spot = 1 gene

Expression level in the cell:

• at given time,

• in a given condition

Inferring genes’ functions. Determining the conditions (times, tissues, etc.) in
which the expression of a given gene is the highest (or lowest) should help in
understanding its function.

S. Robin: Differential analysis of microarrays



4S. Robin: Differential analysis of microarrays



5

Differential analysis

Elementary data: Yitr = expression level of gene i in condition t (t = 1 or 2) at
replicate r

Differentially expressed genes are genes for which Yi1r is not distributed as Yi2r.

Null hypothesis for gene i: H0(i) = {Yi1r
L
= Yi2r}

Statistical test: Student, Wilcoxon, permutation, etc.

For each gene we get:

the value of the test statistic Ti

the corresponding p-value Pi = Pr{T > Ti | H0(i)}

Comparing more than 2 conditions. Same problem: Fisher, Kruskall-Wallis tests
provide one p-value for each gene.
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Multiple testing problem

Rejection rule: For a given level α,

Pi < α =⇒ gene i is declared positive
(i.e. differentially expressed)

Multiple testing: When performing n simultaneous tests

Decision (random)
H0 accepted H0 rejected

H0 true
TN

true negatives
FN

false negatives
n0

negatives

H0 false
FP

false positives
TP

true positives
n1

positives
N negatives R positives n

All the random quantities (capital) depend on the data and the pre-fixed level α.
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Microarray experiment: Typically n = 10 000 tests are performed simultaneously

For α = 5%, if no gene is actually differentially expressed (n1 = 0, n0 = n), we
expect

0.05 × 10 000 = 500“positive” genes

which are all false positives.

Problem: We’d like to control some “global risk” α∗ such as

• the probability of having one false positive (FWER)

FWER = Pr{FP ≥ 1},

• or the proportion of false positives (FDR)

FDR = E (FP/R).

(Benjamini & Hochberg, JRSS-B, 1995; Dudoit & al., Stat. Sci., 2003)
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Family Wise Error Rate (FWER)

FWER = Pr{FP ≥ 1}

Sidak: If the n tests are independent,

FP ∼ B(n, α) =⇒ Pr{FP ≥ 1} = 1 − (1 − α)n.

Fixing level at α = 1 − (1 − α∗)1/n(≃ α∗/n) ensures FWER = α∗.

Bonferroni: In any case

FWER = Pr

{
⋃

i

i false positive

}

≤
∑

i

Pr {i false positive} = nα

Fixing level at α = α∗/n ensures FWER ≤ α∗.

Remark: The independent case is, in some sense, the worst case.
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Adaptive procedure for FWER

Idea:
One step procedure are designed for the smallest p-value
=⇒ they are too conservative.

Principle: Order the p-values

P(1) ≤ · · · ≤ P(i) ≤ · · · < P(n).

Step 1: Apply (say) the Bonferroni correction to P(1): if P(1) ≤ α∗/n then go to
step 2

Step 2: Apply the same correction to P(2), replacing n by n− 1:

if P(2) ≤ α∗/(n− 1) then go to step 3

Step k: Apply the same correction to P(k), replacing n by n− k + 1:

if P(k) ≤ α∗/(n− k + 1) then go to step k + 1
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Thresholds for Golub data: 27 patients with AML, 11 with ALL, n = 7070 genes,
Welch test
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Adjusted p-values can be directly compared to the desired FWER α∗.

• One step Bonferroni

P(i) ≤ α∗/n ⇐⇒ P̃(i) = min(nP(i), 1) ≤ α∗

• One step Sidak

P(i) ≤ 1 − (1 − α∗)1/n ⇐⇒ P̃(i) = 1 − (1 − P(i))
n ≤ α∗

• Adaptive Bonferroni (Holm, 79)

P̃(i) = max
j≤i

{min[(n− j + 1)P(j), 1]}

• Adaptive Sidak

P̃(i) = max
j≤i

{min[1 − (1 − P(j))
n−j+1, 1]}
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Accounting for dependency

The Westfall & Young (93) procedure preserves the correlation between genes
using permutation tests and applying the same permutations to all the genes.

Adjusted p-values are estimated by

ˆ̃p =
1

S

∑

s

I{ps
(g) < pg} ”minP” procedure

1

S

∑

s

I{|T s
(g)| > |Tg|} ”maxT” procedure

The same procedure allows to estimate the distribution of the second, third, etc.,
smallest p value

Limitation. The number of replicates strongly conditions the precision of the
estimated distribution:

(
8
4

)
= 70,

(
10
5

)
= 252
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False Discovery Rate (FDR)

FDR = E (FP/R)

Idea: Instead of preventing any error, just control the proportion of errors
=⇒ less conservative

Benjamini & Hochberg (95) procedure: Given the sorted p-values

P(1) ≤ · · · ≤ P(i) ≤ · · · ≤ P(n),

rejecting H0 for all (i) such as

P(i)

(
≤
iα∗

n

)
≤
iα∗

n0
=⇒ FDR ≤

n0

n
α∗ ≤ α∗

Benjamini & Yakutieli (01): For positively correlated test statistics

P(i) ≤
iα∗

n(
∑

j 1/j)
.
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Adjusted p-values for Golub data / Number of positive genes: α∗ = 5%

p-value: 1887

Bonferroni: 111

Sidak: 113

Holm: 112

Sidak adp.: 113

FDR: 903
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Local False Discovery Rate

FDR provides a general information about the risk of the whole procedure (up
to step i).

We are interested in a specific risk, associated to each gene.

Local FDR (ℓFDR). First defined by Efron & al. (JASA, 2001) in a mixture
model framework:

ℓFDRi := Pr{H0(i) is false | Ti}.

Derivative of the FDR: ℓFDR(i) can be also defined as the derivative of the FDR

ℓFDR(t) = lim
h↓0

FDR(t+ h) − FDR(t)

h

which can be estimated by
n̂0(P(i) − P(i−1))

(Aubert & al., BMC Bioinfo., 04).
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Estimation of the proportion n1/n
The efficiency of all multiple testing procedures would be improved if n0 was
known.

Empirical cdf. The cumulative distribution function (cdf) of the p-value can be
estimated via its empirical version:

Ĝ(p) =
1

n

n∑

i=1

I{Pi ≤ p}.

The cdf of the negative p-values is given by the uniform distribution:

Pr{Pi ≤ p | i ∈ H0} = p.

Cdf mixture. Denoting F the cdf of the positive p-value, we have

G(p) = aF (p) + (1 − a)p, where a = n1/n.

Above a certain threshold t, F (p) should be close to 1:

x > t : G(p) ≃ a+ (1 − a)p.
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Empirical proportion. Storey & al, Genovese & Wasserman (JRSS-B, 02) propose
an estimate of a based on this approximation:

â = [1 − P (t)/n]/(1 − t).

Linear regression. (1 − a) can also be estimated by the coefficient of the linear

regression of Ĝ(p) wrt p

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

S. Robin: Differential analysis of microarrays



18

Mixture model

Model: Posteriori probability:
f(x) = π1f1(x) + π2f2(x) + π3f3(x) τgk = Pr{g ∈ fk | xg} = πkfk(xg)/f(xg)

τgk (%) g = 1 g = 2 g = 3
k = 1 65.8 0.7 0.0
k = 2 34.2 47.8 0.0
k = 3 0.0 51.5 1.0
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Distribution of the test statistic. Efron & al. (01) propose to describe the
distribution of the test statistic Ti using a mixture model.

Ti ∼ f(t) = p1f1(t) + p0f0(t)

where both, a, f0 and f1 have are unknown.
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Figure 2: Estimates of f(�); f0(�) and f1(�) for the situation of Figure 1, model(3.3); p1 = :189, its minimum possible value.
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Using the high number of replicates of their example (Affymetrix data), they
use a local logistic regression to estimate the local FDR (ℓFDR):

ℓFDRi = p0f0(Ti)/f(Ti)

which is actually the posterior probability that the test i is actually negative given
the value of the test statistic.
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Mixture for the p-values

Allison (02) proposes the same strategy regarding the p-values, assuming that

P ∼ aB(r, s) + (1 − a)U[0;1]

where the proportion a and the parameters r and s have to be estimated, for
example, using the E-M algorithm.

Beta density:

β(p; r, s) =

pr−1(1 − p)s−1

B(r, s)
,

0 ≤ p ≤ 1.
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E-M algorithm. The most popular algorithm to estimate the parameters of a
mixture model is Expectation-Maximization. The principle is to alternate the two
steps.

E step: For each observation i calculate the posterior probability τi that it comes
from the non-null distribution using Bayes’ formula

τh+1
i =

âhβ(pi; ŝ
h, r̂h)

ĝh(pi)
, ĝh(pi) = âhβ(pi; r̂

h, ŝh) + (1 − âh)

M step: Calculate the maximum-likelihood estimates of r and s giving to each
observation i a weight τh+1

i .

Properties:

1. At each E-M step, the likelihood of the data under the mixture model increases.

2. E-M provide estimates of the posterior probabilities which are actually the most
relevant quantities.
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Semi-parametric mixture model
Mixture model

Property of the test statistic. The standard hypotheses testing theory implies that,
under H0(i), Pi is uniformly distributed over [0, 1]:

Pi ∼
H0(i)

U[0,1]

The Pi’s are distributed according to a
mixture distribution with density

g(p) = af(p) + (1 − a)

The problem is then to estimate

a: the proportion of differentially expressed genes
f : the (alternative) density f
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Generalization: We consider an i.i.d. sample {X1, . . . , Xn} with mixture density

g(x) = af(x) + (1 − a)φ(x)

The proportion a is unknown −→ parametric part

The density f is completely unknown −→ non parametric part

The density φ in completely specified (U[0,1], N (0, 1), etc.)

Posterior probability. We are interested in the estimation of

τi = Pr{Zi = 1 | xi} = E (Zi | xi) =
af(xi)

g(xi)

where Zi =






Zi = 1 if i comes from f (H0(i) false),

Zi = 0 otherwise (H0(i) true).
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Density estimation

Kernel estimate. A natural non-
parametric estimate of f is

f̂(x) =
1∑
iZi

∑

i

Ziki(x)

where

ki(x) =
1

h
k

(
x− xi

h

)

k being a kernel, i.e. a symmetric
density function with mean 0.
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Weighted kernel estimate. Since the Zi’s are unknown, we propose to replace them
by their conditional expectations:

f̂(x) =
1∑
i τi

∑

i

τiki(x)

τi is the weight of observation i in the estimation of f .
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Property of the τ̂i. The estimates of the τi’s must satisfy

τ̂j =
af̂(xj)

ĝ(xj)
=

a
∑

i τ̂iki(xj)

a
∑

i τ̂iki(xj) + (1 − a)φ(xj)
∑

i τ̂i

or

τ̂j =

∑
i τ̂ibij∑

i τ̂ibij +
∑

i τ̂i
with bij =

a

1 − a

ki(xj)

φ(xj)
≥ 0

Function ψ.

ψ : R n → R n

u → ψ(u) : ψj(u) =

∑
i uibij∑

i uibij +
∑

i ui

τ̂ = (τ̂1, . . . , τ̂n) is a fixed point of ψ.
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Estimation algorithm of τ . Given some initial τ̂ 0, iterate ψ:

τ̂
h+1 = ψ(τ̂h).

a remains fix: it has to be estimated independently.

2 steps of the algorithm:
”E” step: given f̂h and ĝh, calculate

τ̂
h+1 = af̂h(xi)

/
ĝh(xi) .

Other step: given τ̂h, estimate f and g:

f̂h(x) =
∑

i

τ̂h
i ki(x)

/
∑

i

τ̂h
i , ĝh(x) = af̂h(x) + (1 − a)φ(x).

This second step does not maximize the likelihood −→ not an E-M algorithm.
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Theorem: ψ is contracting

=⇒ the algorithm converges toward its unique fix point.

Sketch of proof. ψ = α ◦ β ◦ γ:

αj(u) =
uj

uj + 1
, βj(u) =

∑

i

bijui, γj(u) =
uj∑
i ui

,

1. Simplex E = {u :
∑

i ui = 1} (γ = projection on E)

u
∗ ∈ R n : ψ(u) = u ⇐⇒ v

∗ = γ(u∗) ∈ E : γ ◦ψ(v) = v

→ Just consider γ ◦ψ on the simplex E .

2. Brouwer’s theorem: E is compact and γ ◦ ψ is continuous, so at least one fix
point exists.
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3. Interior of E : E ′ = {u ∈ E : ∀i, ui > 0}.

d(u,v) = log
[
max

i
(ui/vi)

/
min

i
(ui/vi)

]

is a distance on E ′.

4. d decreases when ψ is applied:

d[γ ◦ψ(u),γ ◦ψ(v)] < d(u,v)

(except if u = v). → γ ◦ψ admits at most one fix point in E ′.

5. If kij > 0 for all (i, j):

{u ∈ E \ E ′} =⇒ {γ ◦ψ(u) ∈ E ′}.

γ ◦ψ (and therefore for ψ) admits one unique fix point toward which the algorithm
converges.
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Estimation a (and h)

Analogy with EM. a could be estimated iteratively:

âh =
1

n

∑

i

τ̂h
i

but
τ̂ = ( 1 . . . 1 ), â = 1

is a fixed point of this algorithm.

Remark. For a given a, there is a unique τ̂ .

In some sense, a is the unique parameter of the problem.

Linear regression. a may be estimated in an independent way. Ex: linear regression

â = arg min
a

∑

i:Pi≥t

{
Ĝ(x) − [(1 − a)Φ(x) + b]

}2

.

S. Robin: Differential analysis of microarrays



31

Cross-validation. a (and h) can also be estimated as follows

1. Split the dataset D into V subsets D1, . . . ,DV .
Typically, V = 5 or 10.

2. For v = 1 . . . V

• estimate f and g with the data from D \ Dv (→ f̂v, ĝv),

• calculate

LCV (D; a) =
1

V

∑

v

∑

i∈Dv

log ĝv(xi).

3. Maximize LCV (numerically):

â = arg max
a

LCV (D; a).
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FDR and local FDR estimation

Definition. Recall that, when the i tests with smallest p-values are declared positive
(t = P(i), R(t) = i):

FDR(i) = E [FP (t)/i], FNR(i) = E [FN(t)/(1 − i+ 1)]

These definitions may be rephrased in terms of mixture model.

FDR(i) =
1

i

∑

j:Pj≤P(i)

(1 − τj), FNR(i) =
1

n− i+ 1

∑

j:Pj≤P(i)

τj.

The local FDR is ℓFDRi = 1 − τi.

Estimation. We get the natural estimates:\FDR(i) =
1

i

∑

j≤i

(1 − τ̂j), \FNR(i) =
1

n− i+ 1

∑

j>i

τ̂j. \ℓFDRi = 1 − τ̂i.
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Applications
Probit transform

Pi ∈ [0, 1] Xi = Φ−1(Pi) ∈ R
(Efron, JASA, 2005)

φ = U[0;1] φ = N (0, 1)
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Interest of cross-validation.

Hedenfalk data. Comparison of 2 breast cancers (BRCA1 / BRCA2):
n = 3226 genes, Epanechnikov kernel, Cochran test

log-likelihood L(a, h), (V = 5)

training set test set: LCV
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Estimation of a

50 simulations.

Linear regression (t = 1/2) Cross-validation (maxa LCV )

(â
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)
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Hedenfalk data

Student t-test with homogenous variance σg = cst. Gaussian kernel.

â = 20.6%

ĝ(x) = âf̂(x) + (1 − â)f̂(x)

−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

\FDRi, τ̂i × Φ−1(Pi)

−10 −5 0 5
0

0.2

0.4

0.6

0.8

1

\FDRi, τ̂i × Pi

0 0.5 1
0

0.2

0.4

0.6

0.8

1

H0 (negative) p-values are not uniformly distributed over [0, 1]. The non-
parametric part is contaminated by this departure of the nu.
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Variance modeling K = 5 groups of variances.

â = 30.5%

ĝ(x) = af̂(x) + (1 − a)f̂(x)
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1% 4 2.5 10−5 0.988 31.5%
5% 142 3.1 10−3 0.914 28.7%
10% 296 1.3 10−2 0.798 25.7%\FDR(i) = \FNR(i) = 19.7% for (i) = 633, P(i) = 5.4%, τ̂(i) = 43.5%.
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