MOTIFS DISTRIBUTION IN DNA SEQUENCES

Stéphane ROBIN robin@inapg.inra.fr

UMR INA-PG / INRA, Paris Mathématique et Informatique Appliquées

Bio-Info-Math Workshop, Tehran, April 2005

Biological interest of motif statistics Four examples

Ex 1 : Promoter motifs = structured motifs where polymerase binds to DNA

Which structured motifs occur almost (*too*?) systematically in upstream regions of the genes of a given species?

Ex 2 : CHI motifs in bacterial genomes

Crossover Hot-spot Initiator : defense function of the genome against the degradation activity of an enzyme

Is this motif *unexpectedly frequent* in some regions of the genome?

If so, these regions may contain crucial functions.

Ex 3 : Palindromes = self-complementary words

Palindromes of length 6 are restriction sites (i.e. frailty sites) of the genome of *E. coli*.

If they are *especially avoided* in some regions, these regions may be of major importance for the organism.

Ex 4 : Detection of unknown motifs

- Motifs with favorable functions should be *unexpectedly frequent*,
- Motifs with damaging functions should be *unexpectedly rare*

Even when we know nothing about them (except their length), such motifs may be detected only because they have *unexpected frequencies*

A model : what for ?

Model = Reference

To be able to decide if something is unexpected, we first need to know what to expect.

To avoid artifacts, the model should typically account for

- the frequencies of nucleotides, or di-, or tri-nucleotides in the sequence,
- the overlapping structure of the word,
- eventually, the overall frequency of the word in the sequence The choice of the model (Markov chain / compound Poisson process) depends on the question.

(R., Rodolphe & Schbath; 05)

Overlapping structure of the word

Some words can overlap themselves (see *Conway* (*Gardner*, 74); *Guibas & Odlyzko*, 81).

Such words tend to occur in *clumps* and have a less regular distribution along the sequence.

Cdf of the distance between two occurrences under model M00 :

Probabilities and distributions of interest

- Probability for a motif to occur in a sequence : X_1
 - \longrightarrow promoter motifs
- \bullet Distribution of the number of occurrences : N
- Distribution of the occurrences along the sequence : Y^r , $N(x) N(x y) \longrightarrow$ CHI motifs, palindromes

Motifs occurrences in Markov chains Markov chains = Discrete modeling

 $\mathbf{S} = (S_1, \dots, S_\ell)$ is an homogeneous stationary Markov chain

- of order m (Mm model) over the alphabet $\mathcal{A} = \{a, c, g, t\}$
- with transition probabilities $\pi(s_1, \ldots, s_m; s_{m+1})$.

S
$$\pi(a,c) \quad \pi(t,a) \quad \pi(t,t) \quad \pi(c,t)$$

a c t a t a g g a c t t a g c c t t

The Mm model is fitted to the frequencies of all the words of length (m+1)

$$\widehat{\pi}(s_1,\ldots,s_m;s_{m+1}) = \frac{N(s_1\ldots s_m s_{m+1})}{N(s_1\ldots s_m)}$$

Theoretically, properties derived under M1 can be generalized to Mm: M2 is equivalent to M1 on the alphabet $\mathcal{A}^2 = \{aa, ac, \dots, tt\}$ S. Robin (Motif statistics in DNA)

Distribution of the count

The (ficticious) word w = gctt occurs 56 times in a given genome, is it significantly high?

M1 model. Occurrence probability (at any position) :

$$\mu(\mathbf{w}) = \mu(w1) \times \pi(w_1, w_2) \times \cdots \times \mu(w_{|\mathbf{w}|-1}, w_{|\mathbf{w}|})$$

Expected count (sequence of length ℓ) : $\mathbb{E}N(\mathbf{w}) = (\ell - k + 1)\mu(\mathbf{w})$ Kleffe & Borodowsky, 92 : $\mathbb{E}N(\mathbf{w}), \mathbb{V}N(\mathbf{w})$

Distribution of the count. The exceptionality of the observed frequency is measured by the p-value

$$\Pr_{M1}\{N(\mathbf{w}) \ge n_{obs}(\mathbf{w})\} = \Pr_{M1}\{N(\text{gctt}) \ge 56\}$$

Gaussian approximation. If w is "frequent", $\mathbb{E}N(w) = \mathcal{O}(\ell)$ (*Prum & al, 95*),

$$U(\mathbf{w}) = \frac{N(\mathbf{w}) - \widehat{\mathbb{E}}N(\mathbf{w})}{\sqrt{\widehat{\mathbb{V}}N(\mathbf{w})}} \approx \mathcal{N}(0, 1)$$

Poisson approximation. If w is "rare" : $\mathbb{E}N(\mathbf{w}) = \mathcal{O}(\log \ell)$ (Schbath, 95),

$$N(\mathbf{w}) \approx \mathcal{P}[\mathbb{E}N(\mathbf{w})]$$

For overlapping words : compound Poisson approximation.

Binomial approximation : Van Helden, 99

Exact distribution of $N(\mathbf{w})$: R. & Daudin, 99; Nicodème & al, 99; Regnier, 00

Large deviation : Nuel, 01

Quality of the approximations. The (compound) Poisson approximation turns out to perform very well, in many situations (R. & Schbath, 01):

Even for rather frequent words.

CP approximation fails for frequent and short words.

Influence of the order of the Markov chain. The exceptionality of a word's frequency strongly depends on the chosen model :

	W = GGCGCTGG		W = CGCTGGCG		W = GCCAGCA	
	N(W) = 77		N(W) = 68		N(W) = 57	
Modèle	U(W)	Rang	U(W)	Rang	U(W)	Rang
M0	24.5041	2	22.2126	3	19.6367	8
M1	19.2064	2	14.2766	13	18.5421	3
M2	11.2313	6	7.4762	78	8.2979	49
M3	6.0286	112	1.7250	6896	5.2716	208
M4	7.4302	49	0.2647	23754	2.0605	4043
M5	3.4283	577	0.6474	17247	3.5052	521
M6	-0.4911	42656	0.0313	30053	1.7435	4558

(R'mes software : *Bouvier & al., 99*)

The CHI motif w = gctggtgg appears at the top of the list for almost all orders.

Palindromes of length 6 :

In both model M3 and M4, most of them seem to be avoided in the genome of *E. coli*

Most of them are restriction sites : possible defense system of *E. coli*'s genome.

Distribution of the distance : one word

Blom & Thorburn, 82 (M0); R. & Daudin, 99 (M1)

Distribution of the distance \boldsymbol{Y}

$$p(y) = \Pr\{Y = y\}$$

1. Linear recursive formula of order y - 1 (complexity = $O(y^2)$)

$$p(y) = \sum_{z=1}^{y-1} c_z p(y-z)$$

2. Derive the probability generating function

$$\phi_Y(t) = \sum_{y \ge 1} p(y)t^y = U_Y(t)/V_Y(t)$$

3. Taylor expansion of ϕ_Y with a *new* linear recursive formula of order $|\mathbf{w}|$ (complexity = O(y))

$$p(y) = \sum_{z=1}^{|\mathbf{w}|} c'_k p(y-z)$$

Principle for a set of words

Consider the distribution of the occurrences of the motif

$$\mathbf{m} = \{\mathbf{w}_1, \dots, \mathbf{w}_I\}$$

The distribution of the distances depends on the words themselves (semi-Markov process)

Steps 1, 2, 3 follow the same principle as for one word but involve *generating matrices*

Denoting
$$\phi_{ij}(t) = \phi_{Y_{ij}}(t), \ (i, j = 1..I)$$

$$\Phi(t) = \begin{bmatrix} \phi_{11}(t) & \dots & \phi_{1I}(t) \\ \vdots & & \vdots \\ \phi_{I1}(t) & \dots & \phi_{II}(t) \end{bmatrix}, \qquad \phi_{ij}(t) = \frac{U_{ij}(t)}{V_{ij}(t)}$$

Step 2 requires the inversion of a generating matrix :

$$\Phi(t) = \mathbf{F}(t)[\mathbf{I} - \mathbf{F}(t)]^{-1}$$

Limitations :

- Complexity of this last step : $O(I^3|\mathbf{m}|)$
- Numerical instability except if [I F(t)] is inverted formally \implies small set of short words (small I and |m|)

Other approaches : algorithmic (*Nicodème, 00*), embedded Markov chain (*Fu & Koutras, 94, Koutras, 97*), properties of the exponential family (*Stefanov & Pakes, 99*), etc.

Application to structured motifs

Difficulty : Complexity of the overlapping structure of structured motif

 \implies impossible to calculate the exact distribution of $X_1(\mathbf{m})$ with the method presented above

Approximation (R. & al, 02)

- 1. Probability for m to occur at a given position (using the distribution of the distances) : $\mu(m)$
- 2. Approximation of order 0 (geometric) does not work (simulations) :

$$\Pr\{N(\mathbf{w}) \ge 1\} \approx 1 - [1 - \mu(\mathbf{m})]^{\ell - |\mathbf{m}| + 1}.$$

3. Approximation of order 1 ($\mu_1(m) = \Pr\{m \text{ at } x | m \text{ not at } x - 1\}$):

S. Robin (Motif statistics in DNA) $\geq 1\} pprox 1 - [1 - \mu(\mathbf{m})][1 - \mu_1(\mathbf{m})]^{\ell - |\mathbf{m}|}$

	m			number of regions	expected
	V	$(d_1 : d_2)$	w	containing \mathbf{m}	number
	gttgaca	(16:18)	atataat	7	$2.43 \ 10^{-2}$
Promoters	gttgaca	(16:18)	tataata	8	$2.23 \ 10^{-2}$
in	tgttgac	(16:18)	tataata	10	$2.12\ 10^{-2}$
	ttgacaa	(16:18)	tacaat	9	$9.82 10^{-2}$
B. subtilis :	ttgacaa	(16:18)	tataata	10	$5.07 \ 10^{-2}$
	ttgacag	(16:18)	tataat	9	$7.12 10^{-2}$
131 unstream	ttgacaa	(17:19)	ataataa	9	$6.97 10^{-2}$
	ttgttga	(17:19)	tataata	8	$5.17 10^{-2}$
regions	gttgaca	(17:19)	ataataa	8	$3.09 10^{-2}$
of 100 bps	gttgaca	(17:19)	tataata	8	$2.19 10^{-2}$
	cttgaca	(17:19)	tataat	8	$6.04 10^{-2}$
ก-งลโมค	tgttgac	(17:19)	tataata	12	$2.09 10^{-2}$
p value (10^{-16})	tgttgac	(17:19)	atataat	7	$2.29 10^{-2}$
$< 10^{-10}$	ttgttga	(18:20)	tataata	8	$5.09 10^{-2}$
	gttgaca	(18:20)	ataatga	7	$1.79 10^{-2}$
(putative	gttgttg	(18:20)	tataata	7	$2.53 \ 10^{-2}$
alignment)	tgttgac	(18:20)	ataataa	10	$2.90 10^{-2}$
angiment)	tgttgac	(18:20)	atacta	7	$2.77 \ 10^{-2}$
	tgttgac	(19:21)	ataataa	10	$2.86 \ 10^{-2}$
	tgttgac	(19:21)	atacta	7	$2.73 10^{-2}$
	tgttgac	(19:21)	tataat	10	$6.53 \ 10^{-2}$
	gttgact	(19:21)	ataata	8	$6.25 \ 10^{-2}$

Compound Poisson model

Compound Poisson process = Continuous modeling

For rare words, the sequence S can be viewed as a continuous line $[0; \ell]$

Clump process $\{C(x)\}$ = Poisson process with intensity $\equiv \lambda$

Clump sizes $\{K_1, K_2, \ldots\}$ are iid

$$Pr\{K=k\}=g(k)$$

Counting process of the occurrences $\{N(x)\} =$ compound Poisson process :

$$N(x) = \sum_{c=1}^{C(x)} K_c$$

Non overlapping word \implies simple Poisson process

Interpretation : Poisson modeling implies that the clumps are uniformly distributed along the genome \longrightarrow Null hypothesis of the next part

Pólya-Aeppli model

When considering one single word $\mathbf{w},$ the clump size has a geometric distribution

$$g(k) = a^{k-1}(1-a) \implies \mathbb{E}(K) = 1/(1-a)$$

where a is the overlapping probability of ${\bf w}$

Parameter estimates : In a sequence of length ℓ

- $\hat{\lambda}$ is the empirical frequency of the clumps : $\hat{\lambda} = C(\ell)/\ell$
- \hat{a} is the proportion of overlapped occurrences : $\hat{a} = \frac{N(\ell) C(\ell)}{N(\ell)}$ Properties
- Pólya-Aeppli is the best approximation of the distribution of the word count in the Markov model (*R. & Schbath, 01*)

•
$$\mathbb{E}[N(\ell)] = \ell \times \lambda \times \mathbb{E}(K) \implies \widehat{\mathbb{E}}N(\ell) = \ell \widehat{\lambda}/(1-\widehat{a}) = N(\ell)$$

 \implies no word has an "unexpected" count

Clump size modeling

R., 02

In the general case (e.g. motif $m = \{w_1, w_2, ...\})$, the clump size does not have a geometric distribution

We may use

- empirical estimates of an arbitrary distribution g(k)
- empirical estimates of the overlapping probabilities between words $w_1, w_2, \ldots \Longrightarrow I^2$ parameters to be estimated
- Markov estimates of the overlapping probabilities → even M00 may provide a good fit

However, distances Y between words are *not iid*

Motifs distribution along a sequence Two statistics

We aim to detect poor or rich regions in terms of occurrences of a given motif

A natural criterion for a given region is the ratio

number of occurrences in the region

size of the region

Cumulated distances of order r : <u>fixed numerator r</u> random denominator Y^r

Local counts in a window of width $y : \frac{\text{random numerator } \Delta N}{\text{fixed denominator } y}$

Distribution of the statistics

Cumulated distance : the distribution of

$$Y_{i}^{r} = \sum_{j=i}^{i+r-1} Y_{j} = X_{i+r} - X_{i}$$

is known when the distances Y_i are iid (e.g. in the one word case) for Markov and compound Poisson models

Local count : the distribution of the count

$$\Delta N(x) = N(x) - N(x - y)$$

is known for Markov and compound Poisson models (*Barbour & al, 92*)

Extremal statistics

We are interested in the richest region, i.e.

 $Y_{\min}^r = \min_i \{Y_i^r\}$ or $\Delta N_{\sup} = \sup_x \{\Delta N(x)\}$

Chen-Stein approximation (Arratia & al, 89)

Cumulated distances : an explicit bound distance can be calculated (*Dembo & Karlin, 92*) for the distribution of Y_{\min}^r :

$$\max_{y} \left| \Pr\{Y_{\min}^{r} \leq y\} - e^{-(n-r)\Pr\{Y^{r} \leq y\}} \right| \leq \text{bound}$$

Local counts : no explicit bound can be derived, but this approximation

$$\Pr{\{\Delta N_{sup} > n\}} \simeq \exp[-(\ell - y) \Pr{\{\Delta N > n\}}]$$

is optimal (*Barbour & Brown, 92*) S. Robin (Motif statistics in DNA)

Applications

CHI motif in H. influenza

In terms of overlap, m = (gNtggtgg) behaves as one single word

 \implies cumulated distances can be used

Number of occurrences : $\ell = 1 903 356$ bps

- observed number of occurrences = 223
- expected under Markov (M1) = 58.5
- expected under compound Poisson = 223

Significancy thresholds : for $\alpha = 5\%$

for
$$Y^r$$
: 6 312 bps
for $\min_{i=1...222} Y^r_i$: 238 bps

Distribution : cumulated distances of order r = 3

plot of the ratio $3/Y^3$ (×10⁻³) versus the position x

Remarks :

• Markov model M7 would be unbiased (since $|\mathbf{m}|=8)$ but involves more than 12 000 parameters

The compound Poisson model has a better fit with much less parameters

• In the compound Poisson model, the peak around 1.0 Mb (replication termination) is significant *on its own* :

$$\Pr\{Y^3 \le 208\} = 1.610^{-4}$$

$$\Pr\left\{\min_{i=1..220} \left(Y_i^3\right) \le 208\right\} > 0.05$$

Palindromes in *E. coli* ($\ell = 4\ 638\ 868$)

There are 64 palindromes of length 6 They occur 54 724 times in 50 941 clumps

Clump size : Because of their overlapping structure, clumps can not be considered as geometric

 \implies Local counts should be used

We use a parsimonious modeling of g(k) based the overlapping probabilities given by the M0 model (4 parameters)

Results : Windows of width $y = 10\ 000$ bps

- Poorest region : 73 occurrences (p-value > 10%) : non significant
- Richest region : 185 occurrences (*p*-value < 5%)
 [2 460 567 bps; 2 461 566 bps]
 ... interpretation : horizontal transfer?

Distribution in heterogeneous sequences

Ledent & R., 04

An exogenous information about the heterogeneity of the sequence is sometimes available.

It can be summarize in the quantity $\pi_s(x) =$

- binary (0/1) variable indicating if position x belongs to state s, where states can be : coding / non coding,
- posterior probability of being in state s at position x provided by an HMM model

The intensity $\lambda(x)$ can be modeled according to this information :

$$\lambda(x) = \sum_{s} \lambda_s \pi_s(x),$$

so does the distribution of the clump.

Three steps estimation procedure. Occurrences of aatt in the genome of phage Lambda ($\ell = 48500$ bps)

3 steps :

- 1. Estimate the intensity $\lambda(x)$ (left : green line)
- "Homogenize" the clump process and calculate thresholds (right : red line + blue lines for the bounds)
- 3. come back to the original process (left)