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Microarray CGH technology

- Known effects of big size chromosomal aberrations (ex: trisomy).

→experimental tool: Karyotype (Resolution ∼ chromosome).

- Change of scale: what are the effects of small size DNA sequences dele-
tions/amplifications?

→ experimental tool: "conventional" CGH (resolution ∼ 10Mb).

- CGH= Comparative Genomic Hybridization : method for the comparative
measurement of relative DNA copy numbers between two samples (normal/disease,
test/reference).

→ Application of the microarray technology to CGH : 1997.
→last generation of chips: resolution ∼ 100kb.



Microarray technology in its principle



Interpretation of a CGH profile
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First step of the statistical analysis

Break-points detection in a gaussian signal

- Y = (Y1, ..., Yn) a random process such that Yt ∼ N (µt, σ
2
t ).

- Suppose that the parameters of the distribution of the Y s are affected by K-1
abrupt-changes at unknown coordinates T = (t1, ..., tK−1).

- Those break-points define a partition of the data into K segments of size nk:
Ik = {t, t ∈]tk−1, tk]},

Y k = {Yt, t ∈ Ik}.

- Suppose that those parameters are constant between two changes:

∀t ∈ Ik, Yt ∼ N (µk, σ
2
k).

- The parameters of this model are :
T = (t1, ..., tK−1),

Θ = (θ1, . . . , θK), θk = (µk, σ
2
k).

- Break-points detection aims at studying the spatial structure of the signal.



Estimating the parameters in a model of
abrupt-changes detection

Log-Likelihood

LK(T, Θ) =
K

∑

k=1

log f(yk; θk) =
K

∑

k=1

∑

t∈Ik

log f(yt; θk)

Estimating the parameters with K fixed by maximum likelihood

- Joint estimation of T and Θ with dynamic programming.
- Necessary property of the likelihood : additivity in K (sum of local likeli-

hoods calculated on each segment).

Model Selection : choice of K

- Penalized Likelihood : K̂ = Argmax
K

(

L̂K − β × pen(K)
)

.

- With pen(K) = 2K.
- β is adaptively estimated to the data (Lavielle(2003)).



Example of segmentation on array CGH data
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Considering biologists objective and the need for
a new model
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A new model for segmentation-clustering purposes

- We suppose there exists a secondary underlying structure of the segments
into P populations with weights π1, ..., πP (

∑

p πp = 1).

- We introduce hidden variables, Zkp indicators of the population of origin of
segment k .

- Those variables are supposed independent, with multinomial distribution:

(Zk1, . . . , ZkP ) ∼ M(1; π1, . . . , πP ).

- Conditionnally to the hidden variables, we know the distribution of Y :

Y k|Zkp = 1 ∼ N (1lnk
mp, s

2
pInk

).

- It is a model of segmentation/clustering.
- The parameters of this model are

T = (t1, ..., tK−1),

Θ = (π1, . . . , πP ; θ1, . . . , θP ), avec θp = (mp, s
2
p).



Likelihood and statistical units of the model

- Mixture Model of segments :
? the statistical units are segments :Y k,
? the density of Y k is a mixture density:

logLKP (T, Θ) =
K

∑

k=1

log f(yk; Θ) =
K

∑

k=1

log







P
∑

p=1

πpf(yk; θp)







? If the Yts are independent, we have:

logLKP (T, Θ) =
K

∑

k=1

log







P
∑

p=1

πp

∏

t∈Ik

f(yt; θp)







.

- Classical mixture model :
? the statistical units are the Yts,

logLP (Θ) =

K
∑

k=1

log







∏

t∈Ik

P
∑

p=1

πpf(yt; θp)









An hybrid algorithm for the optimization of the
likelihood

Alternate parameters estimation with K and P known

1 When T is fixed, the EM algorithm estimates Θ:

Θ̂(`+1) = Argmax
Θ

{

logLKP

(

Θ, T (`)
)}

.

logLKP (Θ̂(`+1); T̂ (`)) ≥ logLKP (Θ̂(`); T̂ (`))

2 When Θ is fixed, dynamic programming estimates T :

T̂ (`+1) = Argmax
T

{

logLKP

(

Θ̂(`+1), T
)}

.

logLKP (Θ̂(`+1); T̂ (`+1)) ≥ logLKP (Θ̂(`+1); T̂ (`))

An increasing sequence of likelihoods:

logLKP (Θ̂(`+1); T̂ (`+1)) ≥ logLKP (Θ̂(`); T̂ (`))



Mixture Model when the segmentation is knwon

Mixture model parameters estimators

τ̂kp =
π̂pf(yk; θ̂p)

∑P
`=1 π̂`f(yk; θ̂`)

.

- the estimator the the mixing proportions is: π̂p =
∑

k τ̂kp

K
.

- In the gaussian case, θp = (mp, s
2
p) :

m̂p =

∑

k τ̂kp

∑

t∈Ik
yt

∑

k τ̂kpnk

,

ŝ2
p =

∑

k τ̂kp

∑

t∈Ik
(yt − m̂p)

2

∑

k τ̂kpnk

.

- Big size vectors will have a bigger impact in the estimation of the parameters,
via the term

∑

k τ̂kpnk



Influence of the vectors size on the affectation (MAP)

- The density of Y k can be written as follows:

f(yk; θp) = exp

{

−
nk

2

(

log(2πs2
p) +

1

s2
p

[

(ȳ2
k − ȳ2

k) + (ȳk − mp)
2
]

)}

? (ȳk − mp)
2 : distance of the mean of vector k to population p

? (ȳ2
k − ȳ2

k) : intra-vector k variability

- Big size Individuals will be affected with certitude to the closest population

lim
nk→∞

τkp0 = 1 lim
nk→∞

τkp = 0

lim
nk→0

τkp0 = πp0 lim
nk→0

τkp = πp



Segmentation with a fixed mixture

Back to dynamic programming

- the incomplete mixture log-likelihood can be written as a sum of local log-
likelihoods:

LKP (T, Θ) =
∑

k `kP (yk; Θ)

- the local log-likelihood of segment k corresponds to the mixture log-density
of vector Y k

`kP (yk; Θ) = log







P
∑

p=1

πp

∏

t∈Ik

f(yt; θp)







.

- logLKP (T, Θ) can be optimized in T with Θ fixed, by dynamix programming.



A decreasing log-Likelihood?
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f(yk; Θ) = 0.5N (0, 1) + 0.5N (5, 1)



What is going on?
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Explaining the behavior of the likelihood

Optimization of the incomplete likelihood with dynamic programming:

logLKP (T ; Θ) = QKP (T ; Θ) − HKP (T ; Θ)

QKP (T ; Θ) =
∑

k

∑

p

τkp log(πp) +
∑

k

∑

p

τkp log f(yk; θp)

HKP (T ; Θ) =
∑

k

∑

p

τkp log τkp

Hypothesis:
1 We suppose that the true number of segments is K∗ and that the partitions are

nested for K ≥ K∗.
? Segment Y K is cut into (Y K

1 , Y K
2 ):

f(Y K; θp) = f(Y K
1 ; θp) × f(Y K

2 ; θp).

2 We suppose that if Y K ∈ p then (Y K
1 , Y K

2 ) ∈ p :

τp(Y
K) ' τp(Y

K
1 ) ' τp(Y

K
2 ) ' τp.



An intrinsic penality

Under hypothesis 1-2:

∀K ≥ K∗, log L̂(K+1),P − log L̂(K),P '
∑

p

π̂p log(π̂p) −
∑

p

τ̂p log(τ̂p) ≤ 0

The log-likelihood is decomposed into two terms

- A term of fit that increases with K, and is constant from a certain K∗ (nested
partitions)

∑

k

∑

p

τ̂kp log f(yk; θ̂p).

- A term of differences of entropies that decreases with K: plays the role of
penalty for the choice of K

K
∑

p

π̂p log(π̂p) −
∑

k

∑

p

τ̂kp log τ̂kp.

Choosing the number of segments K when P is fixed can be done with a
penalized likelihood



Incomplete Likelihood behavior with respect to
the number of segments
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Decomposition of the log-likelihood
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Resulting clusters

10 20 30 40 50 60 70 80 90 100 110

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

lo
g 2 r

at
genomic position

Segmentation/Clustering P = 3, K = 8 Segmentation K = 5



Resulting clusters
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Perspective : simultaneous choice for K and P
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This is the end

Conclusions:
- Definition of a new model that considers the a priori knowledge we have about

the biological phenomena under study.
- Development of an hybrid algorithm (EM/dynamic programming) for the pa-

rameters estimation (problems linked to EM : initializtion, local maxima, de-
generacy).

- Still waiting for an other data set to assess the performance of the clustering.

Perspectives:
- Modeling :

? Comparison with Hidden Markov Models
- Model choice:

? Develop an adaptive procedure for two components.
- Other application field

? DNA sequences (in progress)


