A segmentation-clustering problem for the analysis of array CGH data

F. Picard, S. Robin, E. Lebarbier, J-J. Daudin
UMR INA-PG / INRA, Paris
Bio-Info-Math Workshop, Tehran, April 2005

Microarray CGH technology

- Known effects of big size chromosomal aberrations (ex: trisomy).
\rightarrow experimental tool: Karyotype (Resolution \sim chromosome).
- Change of scale: what are the effects of small size DNA sequences deletions/amplifications?
\rightarrow experimental tool: "conventional" CGH (resolution $\sim 10 \mathrm{Mb}$).
- CGH= Comparative Genomic Hybridization : method for the comparative measurement of relative DNA copy numbers between two samples (normal/disease, test/reference).
\rightarrow Application of the microarray technology to CGH : 1997.
\rightarrow last generation of chips: resolution $\sim 100 \mathrm{~kb}$.

Microarray technology in its principle

Chromosome 1
Chromosome 2

Interpretation of a CGH profile

A dot on the graph represents
$\log _{2}\left\{\frac{\sharp \text { copies of } \operatorname{BAC}(\mathrm{t}) \text { in the test genome }}{\sharp \text { copies of BAC(} \mathrm{t}) \text { in the reference genome }}\right\}$

First step of the statistical analysis

Break-points detection in a gaussian signal

- $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ a random process such that $Y_{t} \sim \mathcal{N}\left(\mu_{t}, \sigma_{t}^{2}\right)$.
- Suppose that the parameters of the distribution of the $Y s$ are affected by K-1 abrupt-changes at unknown coordinates $T=\left(t_{1}, \ldots, t_{K-1}\right)$.
- Those break-points define a partition of the data into K segments of size n_{k} :

$$
\begin{gathered}
\left.\left.I_{k}=\{t, t \in] t_{k-1}, t_{k}\right]\right\}, \\
Y^{k}=\left\{Y_{t}, t \in I_{k}\right\} .
\end{gathered}
$$

- Suppose that those parameters are constant between two changes:

$$
\forall t \in I_{k}, Y_{t} \sim \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

- The parameters of this model are :

$$
\begin{aligned}
& T=\left(t_{1}, \ldots, t_{K-1}\right) \\
& \Theta=\left(\theta_{1}, \ldots, \theta_{K}\right), \theta_{k}=\left(\mu_{k}, \sigma_{k}^{2}\right) .
\end{aligned}
$$

- Break-points detection aims at studying the spatial structure of the signal.

Estimating the parameters in a model of abrupt-changes detection

Log-Likelihood

$$
\mathcal{L}_{K}(T, \Theta)=\sum_{k=1}^{K} \log f\left(y^{k} ; \theta_{k}\right)=\sum_{k=1}^{K} \sum_{t \in I_{k}} \log f\left(y_{t} ; \theta_{k}\right)
$$

Estimating the parameters with K fixed by maximum likelihood

- Joint estimation of T and Θ with dynamic programming.
- Necessary property of the likelihood : additivity in K (sum of local likelihoods calculated on each segment).

Model Selection : choice of K

- Penalized Likelihood : $\hat{K}=\underset{K}{\operatorname{Argmax}}\left(\hat{\mathcal{L}}_{K}-\beta \times \operatorname{pen}(K)\right)$.
- With $\operatorname{pen}(K)=2 K$.
- β is adaptively estimated to the data (Lavielle(2003)).

Example of segmentation on array CGH data

Considering biologists objective and the need for

 a new model

Segmentation: structure spatiale du signal

$$
\theta_{k}=\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

Segmentation/Classification

$$
\theta_{p}=\left(m_{p}, s_{p}^{2}\right)
$$

A new model for segmentation-clustering purposes

- We suppose there exists a secondary underlying structure of the segments into P populations with weights $\pi_{1}, \ldots, \pi_{P}\left(\sum_{p} \pi_{p}=1\right)$.
- We introduce hidden variables, $Z_{k p}$ indicators of the population of origin of segment k.
- Those variables are supposed independent, with multinomial distribution:

$$
\left(Z_{k 1}, \ldots, Z_{k P}\right) \sim \mathcal{M}\left(1 ; \pi_{1}, \ldots, \pi_{P}\right) .
$$

- Conditionnally to the hidden variables, we know the distribution of Y :

$$
Y^{k} \mid Z_{k p}=1 \sim \mathcal{N}\left(\mathbb{1}_{n_{k}} m_{p}, s_{p}^{2} I_{n_{k}}\right) .
$$

- It is a model of segmentation/clustering.
- The parameters of this model are

$$
\begin{aligned}
& T=\left(t_{1}, \ldots, t_{K-1}\right) \\
& \Theta=\left(\pi_{1}, \ldots, \pi_{P} ; \theta_{1}, \ldots, \theta_{P}\right), \text { avec } \theta_{p}=\left(m_{p}, s_{p}^{2}\right) .
\end{aligned}
$$

Likelihood and statistical units of the model

- Mixture Model of segments :

\star the statistical units are segments : Y^{k},
\star the density of Y^{k} is a mixture density:

$$
\log \mathcal{L}_{K P}(T, \Theta)=\sum_{k=1}^{K} \log f\left(y^{k} ; \Theta\right)=\sum_{k=1}^{K} \log \left\{\sum_{p=1}^{P} \pi_{p} f\left(y^{k} ; \theta_{p}\right)\right\}
$$

\star If the $Y_{t} s$ are independent, we have:

$$
\log \mathcal{L}_{K P}(T, \Theta)=\sum_{k=1}^{K} \log \left\{\sum_{p=1}^{P} \pi_{p} \prod_{t \in I_{k}} f\left(y_{t} ; \theta_{p}\right)\right\}
$$

- Classical mixture model :
\star the statistical units are the $Y_{t} \mathrm{~s}$,

$$
\log \mathcal{L}_{P}(\Theta)=\sum_{k=1}^{K} \log \left\{\prod_{t \in I_{k}} \sum_{p=1}^{P} \pi_{p} f\left(y_{t} ; \theta_{p}\right)\right\}
$$

An hybrid algorithm for the optimization of the likelihood

Alternate parameters estimation with K and P known

1 When T is fixed, the EM algorithm estimates Θ :

$$
\begin{aligned}
& \hat{\Theta}^{(\ell+1)}=\underset{\Theta}{\operatorname{Argmax}}\left\{\log \mathcal{L}_{K P}\left(\Theta, T^{(\ell)}\right)\right\} . \\
& \log \mathcal{L}_{K P}\left(\hat{\Theta}^{(\ell+1)} ; \hat{T}^{(\ell)}\right) \geq \log \mathcal{L}_{K P}\left(\hat{\Theta}^{(\ell)} ; \hat{T}^{(\ell)}\right)
\end{aligned}
$$

2 When Θ is fixed, dynamic programming estimates T :

$$
\begin{gathered}
\hat{T}^{(\ell+1)}=\underset{T}{\operatorname{Argmax}}\left\{\log \mathcal{L}_{K P}\left(\hat{\Theta}^{(\ell+1)}, T\right)\right\} \\
\log \mathcal{L}_{K P}\left(\hat{\Theta}^{(\ell+1)} ; \hat{T}^{(\ell+1)}\right) \geq \log \mathcal{L}_{K P}\left(\hat{\Theta}^{(\ell+1)} ; \hat{T}^{(\ell)}\right)
\end{gathered}
$$

An increasing sequence of likelihoods:

$$
\log \mathcal{L}_{K P}\left(\hat{\Theta}^{(\ell+1)} ; \hat{T}^{(\ell+1)}\right) \geq \log \mathcal{L}_{K P}\left(\hat{\Theta}^{(\ell)} ; \hat{T}^{(\ell)}\right)
$$

Mixture model parameters estimators

$$
\hat{\tau}_{k p}=\frac{\hat{\pi}_{p} f\left(y^{k} ; \hat{\theta}_{p}\right)}{\sum_{\ell=1}^{P} \hat{\pi}_{\ell} f\left(y^{k} ; \hat{\theta}_{\ell}\right)} .
$$

- the estimator the the mixing proportions is: $\hat{\pi}_{p}=\frac{\sum_{k} \hat{\gamma}_{k p}}{K}$.
- In the gaussian case, $\theta_{p}=\left(m_{p}, s_{p}^{2}\right)$:

$$
\begin{aligned}
\hat{m}_{p} & =\frac{\sum_{k} \hat{\tau}_{k p} \sum_{t \in I_{k}} y_{t}}{\sum_{k} \hat{\tau}_{k p} n_{k}} \\
\hat{s}_{p}^{2} & =\frac{\sum_{k} \hat{\tau}_{k p} \sum_{t \in I_{k}}\left(y_{t}-\hat{m}_{p}\right)^{2}}{\sum_{k} \hat{\tau}_{k p} n_{k}}
\end{aligned}
$$

- Big size vectors will have a bigger impact in the estimation of the parameters, via the term $\sum_{k} \hat{\tau}_{k p} n_{k}$

Influence of the vectors size on the affectation (MAP)

- The density of Y^{k} can be written as follows:

$$
f\left(y^{k} ; \theta_{p}\right)=\exp \left\{-\frac{n_{k}}{2}\left(\log \left(2 \pi s_{p}^{2}\right)+\frac{1}{s_{p}^{2}}\left[\left(\overline{y_{k}^{2}}-\bar{y}_{k}^{2}\right)+\left(\bar{y}_{k}-m_{p}\right)^{2}\right]\right)\right\}
$$

$\star\left(\bar{y}_{k}-m_{p}\right)^{2}:$ distance of the mean of vector k to population p
$\star\left(\overline{y_{k}^{2}}-\bar{y}_{k}^{2}\right)$: intra-vector k variability

- Big size Individuals will be affected with certitude to the closest population

$$
\left.\begin{aligned}
& \lim _{n_{k} \rightarrow \infty} \tau_{k p_{0}}=1 \\
& \lim _{n_{k} \rightarrow 0} \tau_{k p_{0}}=\pi_{p_{0}}
\end{aligned} \right\rvert\, \begin{gathered}
\lim _{n k \infty} \rightarrow \infty \\
\lim _{n_{k} \rightarrow 0} \tau_{k p}=\pi_{k p}
\end{gathered}
$$

Segmentation with a fixed mixture

Back to dynamic programming

- the incomplete mixture log-likelihood can be written as a sum of local loglikelihoods:

$$
\mathcal{L}_{K P}(T, \Theta)=\sum_{k} \ell_{k P}\left(y^{k} ; \Theta\right)
$$

- the local log-likelihood of segment k corresponds to the mixture log-density of vector Y^{k}

$$
\ell_{k P}\left(y^{k} ; \Theta\right)=\log \left\{\sum_{p=1}^{P} \pi_{p} \prod_{t \in I_{k}} f\left(y_{t} ; \theta_{p}\right)\right\}
$$

- $\log \mathcal{L}_{K P}(T, \Theta)$ can be optimized in T with Θ fixed, by dynamix programming.

A decreasing log-Likelihood?

Evolution of the incomplete log-likelihood with respect to the number of segments.

$$
f\left(y^{k} ; \Theta\right)=0.5 \mathcal{N}(0,1)+0.5 \mathcal{N}(5,1)
$$

What is going on?

When the true number of segments is reached (6), segments are cut on the edges.

Explaining the behavior of the likelihood

Optimization of the incomplete likelihood with dynamic programming:

$$
\begin{aligned}
\log \mathcal{L}_{K P}(T ; \Theta) & =Q_{K P}(T ; \Theta)-H_{K P}(T ; \Theta) \\
Q_{K P}(T ; \Theta) & =\sum_{k} \sum_{p} \tau_{k p} \log \left(\pi_{p}\right)+\sum_{k} \sum_{p} \tau_{k p} \log f\left(y^{k} ; \theta_{p}\right) \\
H_{K P}(T ; \Theta) & =\sum_{k} \sum_{p} \tau_{k p} \log \tau_{k p}
\end{aligned}
$$

Hypothesis:

1 We suppose that the true number of segments is K^{*} and that the partitions are nested for $K \geq K^{*}$.
\star Segment Y^{K} is cut into $\left(Y_{1}^{K}, Y_{2}^{K}\right)$:

$$
f\left(Y^{K} ; \theta_{p}\right)=f\left(Y_{1}^{K} ; \theta_{p}\right) \times f\left(Y_{2}^{K} ; \theta_{p}\right) .
$$

2 We suppose that if $Y^{K} \in p$ then $\left(Y_{1}^{K}, Y_{2}^{K}\right) \in p$:

$$
\tau_{p}\left(Y^{K}\right) \simeq \tau_{p}\left(Y_{1}^{K}\right) \simeq \tau_{p}\left(Y_{2}^{K}\right) \simeq \tau_{p}
$$

An intrinsic penality

Under hypothesis 1-2:

$$
\forall K \geq K^{*}, \log \hat{\mathcal{L}}_{(K+1), P}-\log \hat{\mathcal{L}}_{(K), P} \simeq \sum_{p} \hat{\pi}_{p} \log \left(\hat{\pi}_{p}\right)-\sum_{p} \hat{\tau}_{p} \log \left(\hat{\tau}_{p}\right) \leq 0
$$

The log-likelihood is decomposed into two terms

- A term of fit that increases with K, and is constant from a certain K^{*} (nested partitions)

$$
\sum_{k} \sum_{p} \hat{\tau}_{k p} \log f\left(y^{k} ; \hat{\theta}_{p}\right) .
$$

- A term of differences of entropies that decreases with K : plays the role of penalty for the choice of K

$$
K \sum_{p} \hat{\pi}_{p} \log \left(\hat{\pi}_{p}\right)-\sum_{k} \sum_{p} \hat{\tau}_{k p} \log \hat{\tau}_{k p} .
$$

Choosing the number of segments K when P is fixed can be done with a penalized likelihood

Incomplete Likelihood behavior with respect to the number of segments

The incomplete log-likelihood is decreasing from de $K=8$

$$
\hat{\mathcal{L}}_{K P}(\hat{T} ; \hat{\Theta})=\sum_{k} \log \left\{\sum_{p} \hat{\pi}_{p} f\left(y^{k} ; \hat{\theta}_{p}\right)\right\} .
$$

Decomposition of the log-likelihood

$\sum_{k} \sum_{p} \hat{\tau}_{k p} \log f\left(y^{k} ; \hat{\theta}_{p}\right)$

$K \sum_{p} \hat{\pi}_{p} \log \left(\hat{\pi}_{p}\right)-\sum_{k} \sum_{p} \hat{\tau}_{k p} \log \hat{\tau}_{k p}$

Resulting clusters

Resulting clusters

Perspective : simultaneous choice for K and P

Incomplete Log-likelihood with respect to K and P.

This is the end

Conclusions:

- Definition of a new model that considers the a priori knowledge we have about the biological phenomena under study.
- Development of an hybrid algorithm (EM/dynamic programming) for the parameters estimation (problems linked to EM : initializtion, local maxima, degeneracy).
- Still waiting for an other data set to assess the performance of the clustering.

Perspectives:

- Modeling :
\star Comparison with Hidden Markov Models
- Model choice:
\star Develop an adaptive procedure for two components.
- Other application field
\star DNA sequences (in progress)

