Modeling and predicting the structure of transmembrane proteins

Jérôme Waldispühl ¹²³, Jean-Marc Steyaert ²

Jerome.Waldispuhl@polytechnique.edu

¹ Department of Biology, Boston College, USA
² LIX, École polytechnique, France
³ LIAFA, Université de Paris 7, France

Modeling and predicting the structure of transmembrane proteins

Introduction - p. 2/62

Outlines

- Summary of language theory (multi-tape S-attribute grammars),
- some notions of biology,
- an approximate physical model,
- grammatical modeling,
- performance evaluation,
- conclusion.

S-attribute grammars

Definition Context-free grammars

$$G = \{V_T, V_N, P, S\}$$

- \checkmark V_T is the set of terminals,
- \checkmark V_N is the set of non-terminals,
- **●** P is the set of productions rules $(A → \alpha)$,
- \checkmark S is the axiom,
 - \mathcal{A} is the set of attributes,
 - $\lambda_{\mathcal{A}}$ is the set of evaluation functions for the terminals,
 - F_P is the set of the fonctions used to compute the non-terminals attributes.

S-attribute grammars

Definition S-attribute grammars

$G = \{V_T, V_N, P, S, \mathcal{A}, \lambda_{\mathcal{A}}, F_P\}$

- \checkmark V_T is the set of terminals,
- \checkmark V_N is the set of non-terminals,
- \checkmark P is the set of productions rules,
- \checkmark S is the axiom,
- \checkmark \mathcal{A} is the set of attributes,
- \checkmark $\lambda_{\mathcal{A}}$ is the set of evaluation functions for the terminals,
- \checkmark F_P is the set of the fonctions used to compute the non-terminals attributes.

$$\begin{split} V_T &= \{0, \cdots, 9, +, \times\}, \\ V_N &= S, \\ P &= \begin{cases} S \rightarrow S + S \\ S \rightarrow S \times S \\ S \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \end{cases} \\ \mathcal{A} &= \mathbb{N} \\ \lambda_{\mathcal{A}} &= \begin{cases} S_{\mathcal{A}}(0) = 0 \\ \vdots \\ S_{\mathcal{A}}(9) = 9 \\ S_{\mathcal{A}}(+, \times) = 0 \\ f_{S \rightarrow S + S}(xyz) = x + z \\ f_{S \rightarrow S \times S}(xyz) = x \times z \\ f_{S \rightarrow a \in V_T}(x) = x \end{cases} \\ \mathcal{A} &= K \end{split}$$

$$\begin{split} V_T &= \{0, \cdots, 9, +, \times\}, \\ V_N &= S, \\ P &= \begin{cases} S \rightarrow S + S \\ S \rightarrow S \times S \\ S \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \end{cases} \\ \mathcal{A} &= \mathbb{N} \\ \lambda_{\mathcal{A}} &= \begin{cases} S_{\mathcal{A}}(0) = 0 \\ \vdots \\ S_{\mathcal{A}}(9) = 9 \\ S_{\mathcal{A}}(+, \times) = 0 \\ f_{S \rightarrow S + S}(xyz) = x + z \\ f_{S \rightarrow S \times S}(xyz) = x \times z \\ f_{S \rightarrow a \in V_T}(x) = x \end{cases} \\ \mathcal{A} &= K \end{split}$$

Optimization constraint

Definition Optimization constraint

$$\mathcal{C}(x,\lambda_x,y,\lambda_y)$$

- $x and y \in V_T \cup V_N,$
- $\, \bullet \, \lambda_x \ and \ \lambda_x \in \mathcal{A},$
- return the pair (z, λ_z) such that λ_z is optimal.

Example (2) : RNA secondary structure

Example (2) : RNA secondary structure

secondary structure = derivation tree

- folding energy = attributes
- secondary structure with the minimum free energy (Zuker)
 - = derivation tree with the optimal attribute

How to find the optimal derivation tree?

principle : dynamic programming algorithm : Cocke-Kazamy-Younger, Earley, GCP... implementation : *mtsag2c* (F. Lefebvre, 1997) **Definition** Multi-tape alphabet

$$\Sigma = \bigotimes_{i=1\cdots m} (\Sigma^{(i)} \cup \{\varepsilon\})$$

Definition Multi-tape Context-free grammar

 $G = \{V_T, V_N, P, S\}$ where V_T is an m-tape alphabet.

Definition Multi-tape S-attribute grammar

 $G = \{V_T, V_N, P, S, \mathcal{A}, \lambda_{\mathcal{A}}, F_P\}$ where V_T is an m-tape alphabet.

S	\rightarrow	$SS \mid mat \mid del \mid ins \mid mut$
mat	\rightarrow	$\begin{bmatrix} a \\ a \end{bmatrix} \mid \begin{bmatrix} u \\ u \end{bmatrix} \mid \begin{bmatrix} g \\ g \end{bmatrix} \mid \begin{bmatrix} c \\ c \end{bmatrix}$
del	\rightarrow	$\begin{bmatrix} -\\ a \end{bmatrix} \mid \begin{bmatrix} -\\ u \end{bmatrix} \mid \begin{bmatrix} -\\ g \end{bmatrix} \mid \begin{bmatrix} -\\ c \end{bmatrix}$
ins	\rightarrow	$\left[\begin{array}{c} a \\ -\end{array} \right] ~\mid~ \left[\begin{array}{c} u \\ -\end{array} \right] ~\mid~ \left[\begin{array}{c} g \\ -\end{array} \right] ~\mid~ \left[\begin{array}{c} c \\ -\end{array} \right]$
mut	\rightarrow	$\left[egin{a}{a}{u} ight] ~ert \left[egin{a}{g}{g} ight] ~ert \left[egin{a}{a}{c}{a} ight] ~ert \left[egin{a}{a}{a}{a} ight] \\ a ight] \end{array}$
		$ \begin{bmatrix} u \\ g \end{bmatrix} \begin{bmatrix} u \\ c \end{bmatrix} \begin{bmatrix} g \\ a \end{bmatrix} \begin{bmatrix} g \\ u \end{bmatrix}$
		$\left egin{array}{c} g \ c \end{array} ight \left[egin{array}{c} c \ a \end{array} ight \left[egin{array}{c} c \ u \end{array} ight] \left egin{array}{c} c \ g \end{array} ight $

$$\mathcal{A} = \mathbb{Z}$$

$$\lambda(\bullet) = 0$$

$$f_{S \to SS}(xy) = x + y$$

$$f_{S \to del|ins|mut}(x) = x$$

$$f_{mat \to \bullet}(x) = 0$$

$$f_{del \to \bullet}(x) = 1$$

$$f_{ins \to \bullet}(x) = 1$$

$$f_{mut \to \bullet}(x) = 1$$

S	\rightarrow	$SS \mid mat \mid del \mid ins \mid mut$
mat	\rightarrow	$\begin{bmatrix} a \\ a \end{bmatrix} \mid \begin{bmatrix} u \\ u \end{bmatrix} \mid \begin{bmatrix} g \\ g \end{bmatrix} \mid \begin{bmatrix} c \\ c \end{bmatrix}$
del	\rightarrow	$\begin{bmatrix} -\\ a \end{bmatrix} \mid \begin{bmatrix} -\\ u \end{bmatrix} \mid \begin{bmatrix} -\\ g \end{bmatrix} \mid \begin{bmatrix} -\\ c \end{bmatrix}$
ins	\rightarrow	$\left[\begin{array}{c} a \\ -\end{array} \right] ~\mid~ \left[\begin{array}{c} u \\ -\end{array} \right] ~\mid~ \left[\begin{array}{c} g \\ -\end{array} \right] ~\mid~ \left[\begin{array}{c} c \\ -\end{array} \right]$
mut	\rightarrow	$\left[egin{a}{a}{u} ight] ~ert \left[egin{a}{g}{g} ight] ~ert \left[egin{a}{a}{c}{a} ight] ~ert \left[egin{a}{a}{a}{a} ight] \\ a ight] \end{array}$
		$ \begin{bmatrix} u \\ g \end{bmatrix} \begin{bmatrix} u \\ c \end{bmatrix} \begin{bmatrix} g \\ a \end{bmatrix} \begin{bmatrix} g \\ u \end{bmatrix}$
		$\left egin{array}{c} g \ c \end{array} ight \left[egin{array}{c} c \ a \end{array} ight \left[egin{array}{c} c \ u \end{array} ight] \left egin{array}{c} c \ g \end{array} ight $

$$\mathcal{A} = \mathbb{Z}$$

$$\lambda(\bullet) = 0$$

$$f_{S \to SS}(xy) = x + y$$

$$f_{S \to del|ins|mut}(x) = x$$

$$f_{mat \to \bullet}(x) = 0$$

$$f_{del \to \bullet}(x) = 1$$

$$f_{ins \to \bullet}(x) = 1$$

$$f_{mut \to \bullet}(x) = 1$$

Example : RNA sequence alignment

Notions of Biology

- Definition of a protein
- Structure of proteins
- Transmembrane channels

Amino acid chemical formula :

The $20\ \text{amino}\ \text{acids}$:

Notions of biology -p. 14/62

The peptid bond :

The peptid bond :

Structure of proteins

Kynase C

Notions of biology – p. 15/62

$\alpha\text{-helix}$

- 3.6 amino acids per turn,
- hydrogen bond between residus nand n+4.

β -sheet

- \checkmark composed of β -strands
- 2 amino acids per turn,
- hydrogen bond between residues of paired β -strands.

Transmembrane channels

Bacteriorhodopsin

Porin

Notions of biology – p. 18/62

Transmembrane channels

Bacteriorhodopsin

Notions of biology – p. 18/62

Simple topologies (only parallel or anti-parallel pairings),

strong contraints from the environment,

Some parameters are (much) more important than the others (hydrophobicity)

Interest?

nearly 40% of the proteome,

functional importance (allows communication between inner and outer milieu of cell), difficult to be observe experimentaly.

Notions of biology – p. 19/62

- Simple topologies (only parallel or anti-parallel pairings),
- strong contraints from the environment,
- Some parameters are (much) more important than the others (hydrophobicity)

Interest?

nearly 40% of the proteome,

functional importance (allows communication between inner and outer milieu of cell),

difficult to be observe experimentaly.

- Simple topologies (only parallel or anti-parallel pairings),
- strong contraints from the environment,
- Some parameters are (much) more important than the others (hydrophobicity)

Interest?

nearly 40% of the proteome,

functional importance (allows communication between inner and outer milieu of cell),

difficult to be observe experimentaly.

- Simple topologies (only parallel or anti-parallel pairings),
- strong contraints from the environment,
- Some parameters are (much) more important than the others (hydrophobicity)

Interest?

- \checkmark nearly 40% of the proteome,
- functional importance (allows communication between inner and outer milieu of cell),
- Just to be observe experimentaly.
Approximate physical model for transmembrane channels

Approximate physical model for α -transmembrane channels

- Modeling the overall structure of α -channel,
- \checkmark modeling anti-parallel pairing of α -helices,
- \checkmark modeling the local structure of α -helices,
- **P** pseudo folding energy of α -channels.

Description of α -channels with *only* simple anti-parallel pairings.

An α -channel is a concatenation of simple anti-parallel pairings.

Modeling anti-parallel pairing of $\alpha\text{-helices}$

Let's go back to a linear description :

Modeling anti-parallel pairing of $\alpha\text{-helices}$

Let's go back to a linear description :

modeling anti-parallel pairing of α -helices

modeling anti-parallel pairing of α -helices

modeling anti-parallel pairing of α -helices

Modeling the local structure of α -helices

Modeling the local structure of α -helices

Modeling the local structure of α -helices

- 1. $E_{contact}$ residu interaction energy,
- 2. E_{memb} membrane interaction energy,
- **3.** E_{turn} turn energy.

- 1. $E_{contact}$ residu interaction energy,
- 2. E_{memb} membrane interaction energy,
- 3. E_{turn} turn energy.

$$E_{contact} = \sum_{i=0}^{n} f(I_i^k, I_i^{k+1}), \text{ où } f(I_i^k, I_i^{k+1}) = \sum_{\omega_j \in I_i^k} \cdot \sum_{\omega_{j'} \in I_i^{k+1}} \frac{\lambda_j \cdot \lambda_{j'}}{\sqrt{\#I_i^k \cdot \#I_i^{k+1}}}$$

- 1. $E_{contact}$ residu interaction energy,
- 2. E_{memb} membrane interaction energy,
- **3.** E_{turn} turn energy.

$$E_{memb} = \sum_{\omega_i \in O_i^k} \mathcal{K}_{memb} \cdot \lambda_i$$

- 1. $E_{contact}$ residu interaction energy,
- 2. E_{memb} membrane interaction energy,
- 3. E_{turn} turn energy.

$$E_{turn} = \mathcal{T}(n-m) + \sum_{i=m}^{n} \mathcal{K}_{cyt/per} \cdot \lambda_i$$

A β -channel is a concatenation of anti-parallel pairings of β -strands.

Grammatical modeling of Transmembrane channels

- Local structure of the secondary structures : rational grammar
- Secondary structure pairing : context-free grammar
- Overall structure of a TM channel : multi-tape context-free grammar
- pseudo folding energy : attributes

MTCFG des canaux α

Grammatical modeling of TM $\alpha\text{-channels}$

- **9** Regular grammar for α -helix,
- **9** Context-free grammar for α -helix pairings,
- \checkmark Multi-tape context-free grammar for α -channel,
- Muti-tape S-attribute grammar for α -channel,

- A helix is an alternate sequence of residues belonging to a I or O face,
- A helix turn is composed by 3 or 4 consecutive amino acids,

On average, 3.6 residus per turn.

$$P_{helice} = \begin{cases} S_{helice} \rightarrow I_0 \mid I_1 \mid O_0 \mid O_1 \\ I_0 \rightarrow \bullet I_1 \mid \bullet O_0 \\ I_1 \rightarrow \bullet O_0 \mid \bullet O_1 \\ O_0 \rightarrow \bullet O_1 \\ O_1 \rightarrow \bullet I_0 \end{cases}$$

Regular grammar for $\alpha\text{-helix}$

- A helix is an alternate sequence of residues belonging to a I or O face,
- A helix turn is constrained acids,
 A helix turn is constrained acids,
- A helical face has 1 or 2 amino acids,
- On average, 3.6 residus per turn.

$$P_{ap} = \begin{cases} S^{\alpha}_{ap} \rightarrow F^{\alpha}_{O} \mid F^{\alpha}_{I} \\ F^{\alpha}_{I} \rightarrow I F^{\alpha}_{O} I \mid C^{\alpha}_{cyt} \mid C^{\alpha}_{per} \\ F^{\alpha}_{O} \rightarrow O F^{\alpha}_{I} O \mid C^{\alpha}_{cyt} \mid C^{\alpha}_{per} \\ C^{\alpha}_{cyt} \rightarrow i C^{\alpha}_{cyt} \mid i \\ C^{\alpha}_{cpr} \rightarrow o C^{\alpha}_{per} \mid o \end{cases} \qquad P_{helice} = \begin{cases} S_{helice} \rightarrow I_{0} \mid I_{1} \mid O_{0} \mid O_{1} \\ I_{0} \rightarrow \bullet I_{1} \mid \bullet O_{0} \\ I_{1} \rightarrow \bullet O_{0} \mid \bullet O_{1} \\ O_{0} \rightarrow \bullet O_{1} \\ O_{1} \rightarrow \bullet I_{0} \end{cases}$$

Grammatical modeling – p. 32/62

$$P_{ap} = \begin{cases} S^{\alpha}_{ap} \rightarrow F^{\alpha}_{O} \mid F^{\alpha}_{I} \\ F^{\alpha}_{I} \rightarrow I F^{\alpha}_{O} I \mid C^{\alpha}_{cyt} \mid C^{\alpha}_{per} \\ F^{\alpha}_{O} \rightarrow O F^{\alpha}_{I} O \mid C^{\alpha}_{cyt} \mid C^{\alpha}_{per} \\ C^{\alpha}_{cyt} \rightarrow i C^{\alpha}_{cyt} \mid i \\ C^{\alpha}_{cpr} \rightarrow o C^{\alpha}_{per} \mid o \end{cases} \qquad P_{helice} = \begin{cases} S_{helice} \rightarrow I_{0} \mid I_{1} \mid O_{0} \mid O_{1} \\ I_{0} \rightarrow \bullet I_{1} \mid \bullet O_{0} \\ I_{1} \rightarrow \bullet O_{0} \mid \bullet O_{1} \\ O_{0} \rightarrow \bullet O_{1} \\ O_{1} \rightarrow \bullet I_{0} \end{cases}$$

Grammatical modeling – p. 32/62

$$P_{ap} = \begin{cases} S_{ap}^{\alpha} \rightarrow F_{O}^{\alpha} \mid F_{I}^{\alpha} \\ F_{I}^{\alpha} \rightarrow I F_{O}^{\alpha} I \mid C_{cyt}^{\alpha} \mid C_{per}^{\alpha} \\ F_{O}^{\alpha} \rightarrow O F_{I}^{\alpha} O \mid C_{cyt}^{\alpha} \mid C_{per}^{\alpha} \\ C_{cyt}^{\alpha} \rightarrow i C_{cyt}^{\alpha} \mid i \\ C_{per}^{\alpha} \rightarrow o C_{per}^{\alpha} \mid o \end{cases} P_{helice} = \begin{cases} S_{helice} \rightarrow I_{0} \mid I_{1} \mid O_{0} \mid O_{1} \\ I_{0} \rightarrow \bullet I_{1} \mid \bullet O_{0} \\ I_{1} \rightarrow \bullet O_{0} \mid \bullet O_{1} \\ O_{0} \rightarrow \bullet O_{1} \\ O_{1} \rightarrow \bullet I_{0} \end{cases}$$

$$P_{ap} = \begin{cases} S_{ap}^{\alpha} \rightarrow F_{O}^{\alpha} \mid F_{I}^{\alpha} \\ F_{I}^{\alpha} \rightarrow I F_{O}^{\alpha} I \mid C_{cyt}^{\alpha} \mid C_{per}^{\alpha} \\ F_{O}^{\alpha} \rightarrow O F_{I}^{\alpha} O \mid C_{cyt}^{\alpha} \mid C_{per}^{\alpha} \\ C_{cyt}^{\alpha} \rightarrow i C_{cyt}^{\alpha} \mid i \\ C_{per}^{\alpha} \rightarrow o C_{per}^{\alpha} \mid o \end{cases} \qquad \bigcirc P_{helice} = \begin{cases} S_{helice} \rightarrow I_{0} \mid I_{1} \mid O_{0} \mid O_{1} \\ I_{0} \rightarrow \bullet I_{1} \mid \bullet O_{0} \\ I_{1} \rightarrow \bullet O_{0} \mid \bullet O_{1} \\ O_{0} \rightarrow \bullet O_{1} \\ O_{1} \rightarrow \bullet I_{0} \end{cases}$$

$$P_{ap}^{\alpha} = \begin{cases} S_{ap} \quad \rightarrow \quad F_{I}^{1,1} \mid F_{O}^{1,1} & & 1 \\ F_{I}^{1,1} \quad \rightarrow \quad \bullet \quad F_{O}^{1,1} \quad \bullet \mid \bullet \quad F_{O}^{2,1} \quad \bullet \mid \bullet \quad F_{O}^{1,2} \quad \bullet \mid \bullet \quad F_{O}^{1,1} \quad \bullet \mid C_{cyt}^{\alpha} & 2 \\ F_{I}^{2,1} \quad \rightarrow \quad \bullet \quad F_{O}^{1,1} \quad \bullet \mid \bullet \quad F_{O}^{1,2} \quad \bullet \mid C_{cyt}^{\alpha} & 3 \\ F_{I}^{1,2} \quad \rightarrow \quad \bullet \quad F_{O}^{1,1} \quad \bullet \mid \bullet \quad F_{O}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 4 \\ F_{I}^{2,2} \quad \rightarrow \quad \bullet \quad F_{O}^{2,2} \quad \bullet \mid \bullet \quad F_{O}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 5 \\ F_{O}^{1,1} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid \bullet \quad F_{I}^{2,1} \quad \bullet \mid \bullet \quad F_{I}^{1,2} \quad \bullet \mid \bullet \quad F_{I}^{2,2} \quad \bullet \mid \bullet \quad F_{I}^{2,2} \quad \bullet \mid C_{cyt}^{\alpha} & 6 \\ F_{O}^{2,1} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid \bullet \quad F_{I}^{2,1} \quad \bullet \mid \bullet \quad F_{I}^{2,2} \quad \bullet \mid C_{cyt}^{\alpha} & 7 \\ F_{O}^{1,2} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid \bullet \quad F_{I}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{2,1} \quad \bullet \mid C_{cyt}^{\alpha} & 9 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{2,1} \quad \bullet \quad F_{Cyt}^{2,1} \quad F_{Cyt}^{2,1} \quad \bullet \quad F_{Cyt}^{2,1}$$

MTCFG for α -channels

A TM-channel is represented by a 2-tape word :

Grammatical modeling -p. 34/62

MTCFG for α **-channels**

A TM-channel is represented by a 2-tape word :

Grammatical modeling -p. 34/62
$$P_{canal} = \begin{cases} S_{\alpha} & \rightarrow & \begin{bmatrix} t \\ - \end{bmatrix} S_{\alpha} \begin{bmatrix} - \\ t \\ - \end{bmatrix} K_{canal} = \begin{cases} S_{\alpha} & \rightarrow & \begin{bmatrix} t \\ - \end{bmatrix} K_{canal} = \\ T_{seq,cyt}^{\alpha} & \rightarrow & T_{cyt}^{\alpha} T_{seq,per}^{\alpha} \mid T_{cyt}^{\alpha} & 2 \\ T_{seq,per}^{\alpha} & \rightarrow & T_{per}^{\alpha} T_{seq,cyt}^{\alpha} \mid T_{per}^{\alpha} & 3 \\ T_{cyt}^{\alpha} & \rightarrow & \begin{bmatrix} - \\ t \\ - \end{bmatrix} T_{cyt}^{\alpha} \begin{bmatrix} t \\ - \end{bmatrix} \mid C_{cyt}^{\alpha} & 4 \\ T_{per}^{\alpha} & \rightarrow & \begin{bmatrix} - \\ t \\ - \end{bmatrix} T_{per}^{\alpha} \begin{bmatrix} t \\ - \end{bmatrix} \mid C_{per}^{\alpha} & 5 \\ C_{cyt}^{\alpha} & \rightarrow & \begin{bmatrix} i \\ i \end{bmatrix} C_{cyt}^{\alpha} \mid \begin{bmatrix} i \\ i \end{bmatrix} & 6 \\ C_{per}^{\alpha} & \rightarrow & \begin{bmatrix} o \\ o \end{bmatrix} C_{per}^{\alpha} \mid \begin{bmatrix} o \\ o \end{bmatrix} & 7 \end{cases}$$

Grammatical modeling – p. 35/62

Grammatical modeling – p. 36/62

How to integrate the pairing rules?

)))iii)))oo))))ii)))oo)))) ((((iii(((oo((((ii(((oo((((

Grammatical modeling – p. 37/62

How to integrate the pairing rules?

Grammatical modeling - p. 37/62

$$P_{ap}^{\alpha} = \begin{cases} S_{ap} \quad \rightarrow \quad F_{I}^{1,1} \quad | \quad F_{O}^{1,1} \quad & 1 \\ F_{I}^{1,1} \quad \rightarrow \quad \bullet \quad F_{O}^{1,1} \quad \bullet \mid \bullet \quad F_{O}^{2,1} \quad \bullet \mid \bullet \quad F_{O}^{1,2} \quad \bullet \mid \bullet \quad F_{O}^{1,2} \quad \bullet \mid \bullet \quad F_{O}^{1,1} \quad \bullet \mid C^{\alpha} \quad 2 \\ F_{I}^{2,1} \quad \rightarrow \quad \bullet \quad F_{O}^{1,1} \quad \bullet \mid \bullet \quad F_{O}^{2,1} \quad \bullet \mid C^{\alpha} & 3 \\ F_{I}^{1,2} \quad \rightarrow \quad \bullet \quad F_{O}^{1,1} \quad \bullet \mid \bullet \quad F_{O}^{2,1} \quad \bullet \mid C^{\alpha} & 4 \\ F_{I}^{2,2} \quad \rightarrow \quad \bullet \quad F_{O}^{2,2} \quad \bullet \mid C^{\alpha} & 5 \\ F_{O}^{1,1} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid \bullet \quad F_{I}^{2,1} \quad \bullet \mid \bullet \quad F_{I}^{1,2} \quad \bullet \mid \bullet \quad F_{I}^{2,2} \quad \bullet \mid C^{\alpha} & 6 \\ F_{O}^{2,1} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid \bullet \quad F_{I}^{2,1} \quad \bullet \mid C^{\alpha} & 7 \\ F_{O}^{1,2} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid \bullet \quad F_{I}^{2,1} \quad \bullet \mid C^{\alpha} & 8 \\ F_{O}^{2,2} \quad \rightarrow \quad \bullet \quad F_{I}^{1,1} \quad \bullet \mid C^{\alpha} & 9 \\ C^{\alpha} \quad \rightarrow \quad \bullet C^{\alpha} \mid \bullet & 1 \end{cases}$$

$$P^{\alpha} = \begin{cases} S_{\alpha} & \rightarrow \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} S_{\alpha} \left[\begin{smallmatrix} e \\ \bullet \end{bmatrix} \right] Canal & \qquad 1 \\ Canal & \rightarrow F_{I}^{1,1} Canal | F_{0}^{1,1} Canal | F_{I}^{1,1} | F_{0}^{1,1} & \qquad 2 \\ F_{I}^{1,1} & \rightarrow \left[\begin{smallmatrix} \bullet \\ \bullet \end{bmatrix} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{O}^{1,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{O}^{1,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} \right] \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{O}^{1,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{O}^{1,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{O}^{1,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{O}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} \right] F_{O}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{O}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} \right] F_{O}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{1,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{bmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{bmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} \end{bmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} \end{bmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} \end{bmatrix} F_{O}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{O}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} F_{I}^{2,1} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \end{smallmatrix} F_{I}^{2,1} F_{I}^{2$$

Multi-tape S-attribute grammar for α -channels

To each production rule, associate a functions which allows a recursive computation of the energy.

ſ	$ \begin{cases} f^{energy} \\ F^{1,1}_{t} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F^{1,1}_{0,1} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} $ (uvxyz)	=	$x.energy + \frac{(u.hp + v.hp) \cdot (y.hp + z.hp)}{2}$
	$ \begin{array}{c} I \\ f^{energy} \\ F_{I}^{1,1} \rightarrow \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{O}^{2,1} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} \begin{pmatrix} uxyz \\ \varepsilon \end{bmatrix} $	=	$x. energy + \frac{(u.hp) \cdot (y hp + z.hp)}{\sqrt{2}}$
	$ \begin{array}{c} f^{energy} \\ F_{I}^{1,1} \rightarrow \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{O}^{1,2} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} (uvxy) \\ \end{array} $	=	$x.energy + \frac{(u.hp+v.hp) \cdot (y.hp)}{\sqrt{2}}$
	$ \begin{array}{c} f^{energy}_{F_{I}^{1,1} \to \left[\begin{smallmatrix} \varepsilon \\ \bullet \end{smallmatrix}\right]} F_{O}^{2,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix}\right]} (uxy) $	=	$x.energy + u \; hp \cdot y.hp$
	$f_{F_{1,1} \to C^{\alpha}}^{energy}(x)$	=	x.energy
	$ \begin{array}{c} I \\ f^{energy} \\ F_{I}^{2,1} \rightarrow \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{O}^{1,1} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} \begin{pmatrix} uvxyz \end{pmatrix} $	=	$x.energy + \frac{(u.hp+v.hp) \cdot (y.hp+z.hp)}{2}$
$F^{\alpha}_{ap} = \left\{ \right.$	$ \begin{array}{c} f^{energy}_{F_{I}^{2,1} \rightarrow \left[\begin{smallmatrix} \varepsilon \\ \bullet \end{smallmatrix} \right] \left[\begin{smallmatrix} \varepsilon \\ \bullet \end{smallmatrix} \right] F_{O}^{1,2} \left[\begin{smallmatrix} \bullet \\ \varepsilon \end{smallmatrix} \right]^{(uvxy)} } $	=	$x.energy + \frac{(u.hp+v.hp) \cdot (y.hp)}{\sqrt{2}}$
	$f_{F_{\star}^{2,1} \to C^{lpha}}^{energy}(x)$	=	x.energy
	$ \begin{array}{c} I \\ f^{energy} \\ F_{I}^{1,2} \rightarrow \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{O}^{1,1} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} (uvxyz) $	=	$x.energy + \frac{(u.hp+v.hp) \cdot (y.hp+z.hp)}{2}$
	$ \begin{array}{c} f^{energy}_{F_{I}^{1,2} \rightarrow \left[\begin{smallmatrix}\varepsilon\\\bullet\end{smallmatrix}\right]}F_{O}^{2,1}\left[\begin{smallmatrix}\bullet\\\varepsilon\end{smallmatrix}\right]\left[\begin{smallmatrix}\bullet\\\varepsilon\end{smallmatrix}\right]^{(uxyz)} \end{array} $	=	$x.energy + \frac{(u.hp) \cdot (y hp + z.hp)}{\sqrt{2}}$
	$f_{F_{t}^{1,2} \to C^{\alpha}}^{energy}(x)$	=	x.energy
	$ \begin{array}{c} I \\ f^{energy} \\ F_I^{2,2} \rightarrow \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_O^{1,1} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} \begin{pmatrix} uvxyz \end{pmatrix} $	=	$x.energy + \frac{(u.hp+v.hp) \cdot (y.hp+z.hp)}{2}$
l	$ f_{F_{I}^{2,2} \to C^{\alpha}}^{energy}(x) $	=	x.energy

$$\begin{split} f_{D}^{energy} & \varepsilon_{D}^{1,1} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{I}^{1,1} \begin{bmatrix} \bullet \\ \varepsilon \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} (uvyz) \\ \bullet \end{bmatrix} & = x. \text{energy} \\ f_{D}^{energy} & \varepsilon_{D}^{1,1} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{I}^{2,2} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{I}^{2,2} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \begin{bmatrix} uvy \\ \bullet \end{bmatrix} & = x. \text{energy} \\ f_{D}^{energy} & \varepsilon_{D}^{1,1} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{I}^{2,2} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \begin{bmatrix} uvy \\ \bullet \end{bmatrix} & = x. \text{energy} \\ f_{D}^{energy} & \varepsilon_{D}^{1,1} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{I}^{2,2} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \begin{bmatrix} uvy \\ \bullet \end{bmatrix} \\ f_{D}^{energy} & \varepsilon_{D}^{1,1} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{I}^{1,1} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \begin{bmatrix} uvy \\ \bullet \end{bmatrix} \\ f_{D}^{energy} & \varepsilon_{D}^{1,1} \to C\alpha \\ f_{D}^{energy} & \varepsilon_{D}^{1,1} \to C\alpha \\ f_{D}^{energy} & \varepsilon_{D}^{1,1} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{I}^{1,1} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \begin{bmatrix} uvy \\ \bullet \end{bmatrix} \\ f_{D}^{energy} & \varepsilon_{D}^{2,1} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} F_{I}^{1,2} \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{1,2} \to C\alpha \\ f_{D}^{energy} & \varepsilon_{D}^{2,1} \to \begin{bmatrix} \varepsilon \\ \bullet \end{bmatrix} \\ f_{D}^{1,1} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{1,2} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{1,2} \to C\alpha \\ f_{D}^{2,1} \to C\alpha \\ f_{D}^{2,2} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{1,1} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{1,1} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{1,1} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{2,1} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{1,1} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{D}^{2,1} & \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \\ f_{$$

An example!

Grammatical modeling – p. 40/62

Grammatical modeling – p. 41/62

Grammatical modeling – p. 41/62

MTSAG for β -channels

Periplasme

MTSAG for β -channels

Grammatical modeling – p. 42/62

MTSAG for TM channels

What has not been said :

- J TM-channel closure,
- **J** TM α -helix selection,
- turn selection (between secondary structures),
- constraints on the overlapping of the motifs.

Performance evaluation

Performance evaluation

- How to realize a structure prediction?
- How to evaluate a prediction?
- PResults.

- syntax analysis (GCP algorithm),
- implementation using *mtsag2c* (F. Lefebvre),
- software *tmmtsag*... and now ASTRiD (web interface).

Example of an α -channel : Bacteriorhodopsin

LNIETLLFMVLDVSAKVGFGLILLRSRAIFGEAEAPEPSAGDGAAATS
SHHHHHHHHHHHHHHHHHHTTTT
РРМРРМРРМРРМРРМРР
МММММММММММММММММ

pseudo folding energy : 1583.92

How to realize a structure prediction?

How to realize a structure prediction?

Example of a β -channel : Porin

pseudo folding energy : 402.15

Definition A secondary structure is said to be predicted, if it intersects one and only one observed secondary structure.

Definition A structure is correctly predicted if all its secondary structures are predicted, almost predicted if the non-predicted secondary structures do not intersect any observed secondary structures, and non-predicted otherwise.

Performance evaluation -p. 48/62

Performance evaluation -p. 48/62

Estimator for the secondary structure element prediction

$$\begin{aligned} Q_{ok} &= 100 \cdot \frac{\text{number of correctly predicted structures}}{\text{number of proteins}} \\ Q_{stm}^{\% obs} &= 100 \cdot \frac{\text{number of TM segments correctly predited}}{\text{number of TM segment observed}} \\ Q_{stm}^{\% pred} &= 100 \cdot \frac{\text{number of TM segments correctly predited}}{\text{number of TM segments correctly predited}} \end{aligned}$$

Estimator for the secondary structure assignment prediction

$$\begin{split} Q_2 &= 100 \cdot \frac{\text{number of correctly predicted residus}}{\text{number of residus}} \\ Q_{2T}^{\% obs} &= 100 \cdot \frac{\text{number of correctly predicted residus in TM segment}}{\text{number of residus observed in TM segments}} \\ Q_{2T}^{\% pred} &= 100 \cdot \frac{\text{number of correctly predicted residus in TM segment}}{\text{number of residus predicted residus in TM segments}} \\ Q_{2N}^{\% obs} &= 100 \cdot \frac{\text{number of correctly predicted residus in non-TM segment}}{\text{number of residus observed in non-TM segments}} \\ Q_{2N}^{\% opred} &= 100 \cdot \frac{\text{number of correctly predicted residus in non-TM segment}}{\text{number of residus observed in non-TM segments}} \\ \end{split}$$

Procedure

- \checkmark 28 α -TM proteins known at high resolution level,
- \checkmark 82 α -TM proteins known at low resolution level,
- \checkmark 14 β -TM proteins known at high resolution level,
- 567 globular proteins,
- computation of sub-optimals structures,
- comparison with 8 other software.

$\alpha\text{-TM}$ proteins known at high resolution level

	topology	helices		2-states	TM residus		non-TM residus	
Method	Q_{ok}	$Q_{stm}^{\% obs}$	$Q_{stm}^{\% pred}$	Q_2	$Q_{2T}^{\% obs}$	$Q_{2T}^{\% pred}$	$Q_{2N}^{\% obs}$	$Q_{2N}^{\% pred}$
tmmtsag-basic	75.00(92.86)	97.18	93.88	78.24	87.56	78.77	64.04	77.16
tmmtsag-opt	92.86(100.00)	99.30	98.60	80.06	89.17	80.07	66.17	80.04
hmmtop2	71.43(100.00)	97.18	96.50	79.50	71.84	92.55	91.18	68.00
memsat	60.00(100.00)	94.00	97.92	77.43	67.63	94.34	93.39	63.91
phd-psihtm	71.43(96.43)	88.73	96.92	76.29	68.76	89.55	87.77	64.83
pred-tmr	53.57(100.00)	88.73	100.00	74.41	59.12	97.52	97.71	61.07
sosui	82.14(100.00)	97.18	99.28	80.70	72.71	93.95	92.87	69.10
tmhmm1	71.43(100.00)	96.48	97.16	79.80	72.76	92.13	90.52	68.56
toppred2	71.43(100.00)	95.07	94.41	75.69	66.31	90.98	89.98	63.67

$\alpha\text{-TM}$ proteins known at low resolution level

	topology	helices		2-states	TM residus		non-TM residus	
Method	Q_{ok}	$Q_{stm}^{\% obs}$	$Q_{stm}^{\% pred}$	Q_2	$Q_{2T}^{\% obs}$	$Q_{2T}^{\% pred}$	$Q_{2N}^{\% obs}$	$Q_{2N}^{\% pred}$
tmmtsag-basic	37.80(73.17)	87.11	81.68	69.30	87.06	60.31	55.50	84.67
tmmtsag-opt	60.98(95.12)	95.70	91.42	75.25	90.42	65.79	63.47	89.51
hmmtop2	60.98(86.59)	87.11	93.31	84.39	81.69	82.44	86.48	85.88
memsat	54.88(92.68)	91.02	93.20	85.26	81.40	84.80	88.35	85.60
phd-psihtm	24.36(43.59)	60.04	72.02	83.99	91.08	76.60	78.51	91.93
pred-tmr	50.00(96.34)	88.09	96.57	85.19	75.86	88.63	92.44	83.14
sosui	48.78(90.24)	86.33	94.85	82.36	79.17	80.21	84.83	83.98
tmhmm1	69.51(89.02)	90.23	95.45	85.32	83.02	83.34	87.11	86.85
toppred2	53.66(86.59)	83.59	95.75	83.46	74.48	85.81	90.43	82.02

β -TM proteins known at high resolution level

	topology	strands		2-states	TM residus		non-TM residus	
Method	Q_{ok}	$Q_{stm}^{\% obs}$	$Q_{stm}^{\% pred}$	Q_2	$Q_{2T}^{\% obs}$	$Q_{2T}^{\% pred}$	$Q_{2N}^{\% obs}$	$Q_{2N}^{\% pred}$
total								
tmmtsag-basic	7.14(78.57)	83.14	66.82	64.87	72.71	69.99	53.07	56.37
tmmtsag-opt	21.43(92.86)	90.70	82.98	66.80	74.03	71.66	55.93	58.85
tmb-hmm	64.29(100.00)	97.09	97.09	84.04	85.75	87.45	81.47	79.15
small proteins								
tmmtsag-basic	50.00(75.00)	90.62	80.56	70.23	74.30	79.50	62.21	55.10
tmmtsag-opt	50.00(100.00)	93.75	93.75	76.12	78.97	84.08	70.51	62.96
tmb-hmm	75.00(100.00)	96.88	96.88	82.33	83.64	89.05	79.72	71.19

Performance evaluation – p. 55/62

Performance evaluation – p. 56/62

Performance evaluation – p. 57/62

Method	false negatives (%)	false positives (%)						
Method	laise negatives (70)	$\Delta_{hires}^{tm,\alpha}$	$\Delta_{lowres}^{tm,\alpha}$	$\Delta_{hires}^{tm,\beta}$	$\Delta^{tm}_{\alpha+\beta}$			
tmmtsag-basic	14.8	0	8.5	7.1	6.2			
hmmtop2	6	0	1	-	-			
phd-psihtm	2	3	8	-	-			
pred-tmr	4	8	1	-	-			
sosui	1	8	4	-	-			
tmhmm1	1	8	4	-	-			
toppred2	10	8	11	-	-			
tmb-hmm	10	-	-	0	-			

What has been done :

tmmtsag is the first software able to :

- use efficiently and without restrictions, long range interactions,
- \checkmark unify α -channel and β -channel in the same model,
- \checkmark discriminate the 3 categories α , β and globular.

Advantages :

- simple, versatile and efficient,
- In learning method used (more able to detect new structures, with lack of experimental data's).

What has to be done :

- refining the physical approximate model (structure and energy),
- integrating existing methods,
- modeling the quaternary structure,
- extension to globular proteins.

What we are doing :

- model refinement (joint work with T. Simonson),
- study of single point mutations in human rhodopsin (joint work with P. Clote),
- reconstructing the tertiary structure from contact predictions,
- screening of a complete genome,
- web interface : ASTRiD http ://www.lix.polytechnique.fr/Labo/Jerome.Waldispuhl/astrid/.

References

This work :

J. Waldispühl and J.-M. Steyaert, Modeling and Predicting All-α Transmembrane Proteins Including Helix-helix Pairing, to appear in Theoretical Computer Science, special issue on pattern discovery in the post genom, 26 pages, 2005. available online : http://www.elsevier.com/locate/tcs/

Multi-tape S-attributed grammars :

F. Lefebvre,

A Grammar-Based Unification of Several Alignment and Folding Algorithms, *Proceedings of the Fourth International Conference on Intelligent Systems for Molecular Biology*, pp 143-154, 1996.

Slides :

These slides have been realized with the Youpla LATEXpackage, provided by E. Thome. Download it, at : http ://www.loria.fr/~thome/