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Overview – Today

The Keller-Segel model.

Variations on the same theme. Models with global
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The Keller-Segel Model

Forx ∈ R
2, we call theclassical Keller-Segel model:

∂tρ = ∇ · (∇ρ− χρ∇S) ,

∆S = −ρ ,

with
ρ(·, 0) = ρI ,

with χ = χ0 = const.
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Keller-Segel Models

Corollary. In the two dimensional case, for the classical
Keller-Segel model, we have:
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Keller-Segel Models

Corollary. In the two dimensional case, for the classical
Keller-Segel model, we have:

if M < 8π/χ: global existence of solutions,
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Keller-Segel Models

Corollary. In the two dimensional case, for the classical
Keller-Segel model, we have:

if M < 8π/χ: global existence of solutions,

if M > 8π/χ: finite-time-blow-up.
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Keller-Segel Models

Consider the following Keller-Segel model (with
prevention of overcrowding) (Hillen-Painter model):

∂tρ = ∇ · (∇ρ− χ(ρ)ρ∇S)

∆S = −ρ ,

where
χ(ρ) = 0 , ρ ≥ ρ̄ > 0 .
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Keller-Segel Models

Consider the following Keller-Segel model (with
prevention of overcrowding) (Hillen-Painter model):

∂tρ = ∇ · (∇ρ− χ(ρ)ρ∇S)

∆S = −ρ ,

where
χ(ρ) = 0 , ρ ≥ ρ̄ > 0 .

Theorem. (Hillen, Painter, 2002) Solutions of the HP
model exist globally.
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Keller-Segel Models

Define thenon-localgradient

◦

∇R f(x, t) =
1

ωn−1Rn−1

∫

Sn−1

f(x+ yR)dy .
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Keller-Segel Models

Define thenon-localgradient

◦

∇R f(x, t) =
1

ωn−1Rn−1

∫

Sn−1

f(x+ yR)dy .

Then the Hillen-Schmeiser-Painter model

∂tρ = ∇ ·
(

∇ρ− χρ
◦

∇R S
)

,

has global existence of solutions.
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Keller-Segel Models

Consider a sensitivity (Velazquez’ model):

χ(ρ) = χµ(ρ) =
ρ

1 + µρ
,
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Keller-Segel Models

Consider a sensitivity (Velazquez’ model):

χ(ρ) = χµ(ρ) =
ρ

1 + µρ
,

Theorem. (Velazquez, 2004) The V model has global
existence of solutions for anyµ > 0.
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Keller-Segel Models

Consider a sensitivity (Velazquez’ model):

χ(ρ) = χµ(ρ) =
ρ

1 + µρ
,

Theorem. (Velazquez, 2004) The V model has global
existence of solutions for anyµ > 0.

For t < T , limµ→0 ρµ = ρ0.
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Keller-Segel Models

Consider a sensitivity (Velazquez’ model):

χ(ρ) = χµ(ρ) =
ρ

1 + µρ
,

Theorem. (Velazquez, 2004) The V model has global
existence of solutions for anyµ > 0.

For t < T , limµ→0 ρµ = ρ0.

This cannot be extended afterT becauseρ0 no
longer exists (T is the blow up time).
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Keller-Segel Models

Consider a sensitivity (Velazquez’ model):

χ(ρ) = χµ(ρ) =
ρ

1 + µρ
,

Theorem. (Velazquez, 2004) The V model has global
existence of solutions for anyµ > 0.

For t < T , limµ→0 ρµ = ρ0.

This cannot be extended afterT becauseρ0 no
longer exists (T is the blow up time).

For anyµ > 0, ρµ exists for any timet.
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Kinetic Models

f(x, v, t) is the density of cell in space-time point
(x, t) with velocityv (phase-space density).

Mathematical models for cell movementPart II– p. 9



Kinetic Models

f(x, v, t) is the density of cell in space-time point
(x, t) with velocityv (phase-space density).

The cell goes in straight line for a certain
characteristic time and then changes its direction
from v′ to v (in a space-time point(x, t) in the
presence of the substanceS and cell densityρ)
according to a certain turning kernel
T [S, ρ](x, v, v′, t).
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Kinetic Models

f(x, v, t) is the density of cell in space-time point
(x, t) with velocityv (phase-space density).

The cell goes in straight line for a certain
characteristic time and then changes its direction
from v′ to v (in a space-time point(x, t) in the
presence of the substanceS and cell densityρ)
according to a certain turning kernel
T [S, ρ](x, v, v′, t).

The set of all possible velocities is given by a
compact, spherically symmetric setV .
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Kinetic Models

We define an equilibrium distributionF = F (v):

F > 0 ,

∫

V

Fdv = 1 ,

∫

V

vFdv = 0 ,

if S = S0 =⇒ T [S0, ρ](x, v, v
′, t)F (v′) = T [S0, ρ](x, v

′, v, t)F (v) .

Mathematical models for cell movementPart II– p. 10



Kinetic Models

We define an equilibrium distributionF = F (v):

F > 0 ,

∫

V

Fdv = 1 ,

∫

V

vFdv = 0 ,

if S = S0 =⇒ T [S0, ρ](x, v, v
′, t)F (v′) = T [S0, ρ](x, v

′, v, t)F (v) .

Two possible turning kernels:

T [S, ρ](x, v, v′, t) = λ(S, ρ)(x, t)F (v) + a(S, ρ)F (v)v · ∇S(x, t) ,

T [S, ρ](x, v, v′, t) = ψ(S(x+ vt, t) − S(x, t))F (v) .
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Kinetic Models

∂tf(x, v, t) + v · ∇f(x, v, t) =
∫

V

(T [S, ρ](x, v, v′, t)f(x, v′, t) − T [S, ρ](x, v′, v, t)f(x, v, t))dv′ .
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Kinetic Models

Notation

f = f(x, v, t) ,

f ′ = f(x, v′, t) ,

T [S, ρ] = T [S, ρ](x, v, v′, t) ,

T ∗[S, ρ] = T [S, ρ](x, v′, v, t).
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Kinetic Models

Notation

f = f(x, v, t) ,

f ′ = f(x, v′, t) ,

T [S, ρ] = T [S, ρ](x, v, v′, t) ,

T ∗[S, ρ] = T [S, ρ](x, v′, v, t).

Equation

∂tf + v · ∇f =

∫

V

(T [S, ρ]f ′ − T ∗[S, ρ]f)dv′ .
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Kinetic Model

This is an example of a Boltzmann-type
integro-differential equation (kinetic model).
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Kinetic Model

This is an example of a Boltzmann-type
integro-differential equation (kinetic model).

The “macroscopic” densityρ is related to the
“microscopic” densityf by

ρ(x, t) =

∫

V

f(x, v, t)dv .
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Kinetic Model

This is an example of a Boltzmann-type
integro-differential equation (kinetic model).

The “macroscopic” densityρ is related to the
“microscopic” densityf by

ρ(x, t) =

∫

V

f(x, v, t)dv .

We should consider also an equation forS:

∂tS = D0∆S + ϕ(S, ρ) .
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Kinetic Model

This is an example of a Boltzmann-type
integro-differential equation (kinetic model).

The “macroscopic” densityρ is related to the
“microscopic” densityf by

ρ(x, t) =

∫

V

f(x, v, t)dv .

We should consider also an equation forS:

∂tS = D0∆S + ϕ(S, ρ) .
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Kinetic Models

Theorem. (C., Markowich, Perthame, Schmeiser, 2004;
Hwang, Kang, Stevens, 2005) Ifψ(y) ≤ Ay +B then
solutions of the kinetic model exist globally.

Mathematical models for cell movementPart II– p. 14



Kinetic Models

Theorem. (C., Markowich, Perthame, Schmeiser, 2004;
Hwang, Kang, Stevens, 2005) Ifψ(y) ≤ Ay +B then
solutions of the kinetic model exist globally.
Proof: (Let us supposen = 3, the casen = 2 is
technically more complicated but similar.)
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Kinetic Models

Theorem. (C., Markowich, Perthame, Schmeiser, 2004;
Hwang, Kang, Stevens, 2005) Ifψ(y) ≤ Ay +B then
solutions of the kinetic model exist globally.
Proof: (Let us supposen = 3, the casen = 2 is
technically more complicated but similar.) We divide

S(x, t) =
1

4π

∫

R3

1

|x− y|
ρ(y, t)dy ,

in S = SS + SL, where

SS =
1

4π| · |
I{|x|<1} ∗ ρ , SL =

1

4π| · |
I{|x|≥1} ∗ ρ .
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Kinetic Models

Mass conservation:

||ρ(·, t)||L1(R3) = ||f(·, ·, t)||L1(R3×V ) = ||f I||L1(R3×V ) .
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Kinetic Models

Mass conservation:

||ρ(·, t)||L1(R3) = ||f(·, ·, t)||L1(R3×V ) = ||f I||L1(R3×V ) .

From Young’s inequality:

||SL(·, t)||L∞(R3) ≤
1

4π
||f I||L∞(R3×V ) .
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Kinetic Models

Mass conservation:

||ρ(·, t)||L1(R3) = ||f(·, ·, t)||L1(R3×V ) = ||f I||L1(R3×V ) .

From Young’s inequality:

||SL(·, t)||L∞(R3) ≤
1

4π
||f I||L∞(R3×V ) .

Possibly changing the bounds on the turning kernels, we
can changeS by SS.
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Kinetic Models

Now, we have that

∂tf + v · ∇f ≤

∫

V

T [S(x, v, v′, t)f(x, v′, t)dv′ .

Mathematical models for cell movementPart II– p. 16



Kinetic Models

Now, we have that

∂tf + v · ∇f ≤

∫

V

T [S(x, v, v′, t)f(x, v′, t)dv′ .

We writeT [S(x, v, v′, t) ≤ C(1 +SS(x+ v, t)), and then

f(x, v, t) ≤ f I(x− vt, t) +C

∫ t

0

ρ(x− vs, t− s)ds+Cf 1(x, v, t) ,

where

∂tf(x, v, t) + v · ∇f(x, v, t) =

∫

V

SS(x+ v, t)f(x, v′, t)dv′ ,

f(x, v, 0) = 0 .
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Kinetic Models

f 1(x, v, t) =

∫ t

0

S(x− vs+ v, t− s)ρ(x− vs, t− s)ds .
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Kinetic Models

f 1(x, v, t) =

∫ t

0

S(x− vs+ v, t− s)ρ(x− vs, t− s)ds .

||f 1(·, ·, t)||Lp ≤ sup
s∈[0,t]

||SS(·, s)||Lp

∫ t

0

||ρ(·, t− s)||Lpds .
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Kinetic Models

f 1(x, v, t) =

∫ t

0

S(x− vs+ v, t− s)ρ(x− vs, t− s)ds .

||f 1(·, ·, t)||Lp ≤ sup
s∈[0,t]

||SS(·, s)||Lp

∫ t

0

||ρ(·, t− s)||Lpds .

||ρ(·, t)||Lp ≤ C(V )||f(·, ·, t)||Lp .
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Kinetic Models

f 1(x, v, t) =

∫ t

0

S(x− vs+ v, t− s)ρ(x− vs, t− s)ds .

||f 1(·, ·, t)||Lp ≤ sup
s∈[0,t]

||SS(·, s)||Lp

∫ t

0

||ρ(·, t− s)||Lpds .

||ρ(·, t)||Lp ≤ C(V )||f(·, ·, t)||Lp .

We put everything together and find forp ≥ 2

||f(·, ·, t)||Lp ≤ ||f I||Lp+

C

(

1 + sup
s∈[0,t]

||SS(·, s)||Lp

)

∫ t

0

||f(·, ·, s)||Lpds .
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Kinetic Models

In the previous equation, fixp = 2. In this case

1

4π|x|
I{|x|≤1} ∈ L2 .
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Kinetic Models

In the previous equation, fixp = 2. In this case

1

4π|x|
I{|x|≤1} ∈ L2 .

Then, from Young’s inequality:

||SS(·, t)||L2 ≤ c||f I||L1 ,
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Kinetic Models

In the previous equation, fixp = 2. In this case

1

4π|x|
I{|x|≤1} ∈ L2 .

Then, from Young’s inequality:

||SS(·, t)||L2 ≤ c||f I||L1 ,

and from Gronwall’s inequality we conclude a bound for
||f(·, ·, t)||L2.
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Kinetic Models

Still, from Young’s inequality, we have

||SS(·, t)||L∞ ≤ c||f(·, ·, t)||L2 ≤ C(t) ,

and again from Young’s inequality, we have a bound for
||f(·, ·, t)||L∞.
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Kinetic Models

Let us consider the following turning kernels (with
prevention of overcrowding):

Tε[S, ρ] = λ(S, ρ)F + εa(S, ρ)Fv · ∇S ,

Tε[S, ρ] = ψ(S(x+ εµ(ρ)v, t) − S(x, t))F

with
a(S, ρ) = 0 , µ(ρ) = 0 , ρ ≥ ρ̄ > 0 ,

andε > 0 is a small parameter.
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Kinetic Models

Theorem. (C., Rodrigues, 2005) The kinetic models
associated to these turning kernels have global existence
of solutions. Furthermore,

||ρ(·, t)||L∞(Rn) ≤ max{ρ̄, ||ρI||L∞(Rn)} .
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Kinetic Models

Theorem. (C., Rodrigues, 2005) The kinetic models
associated to these turning kernels have global existence
of solutions. Furthermore,

||ρ(·, t)||L∞(Rn) ≤ max{ρ̄, ||ρI||L∞(Rn)} .

We prove only the first case, the second is similar.
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Kinetic Models

Theorem. (C., Rodrigues, 2005) The kinetic models
associated to these turning kernels have global existence
of solutions. Furthermore,

||ρ(·, t)||L∞(Rn) ≤ max{ρ̄, ||ρI||L∞(Rn)} .

We prove only the first case, the second is similar.

We consider initial conditions given byf I = ρIF
andS = 0 and thatλ is constant.
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Kinetic Models

Lemma. First note that

sup
s∈[0,t]

||∇S(·, s)||L∞ ≤ c

(

sup
s∈[0,t]

||ρ(·, s)||L∞ + sup
s∈[0,t]

||ρ(·, s)||L1

)

.
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Kinetic Models

Lemma. First note that

sup
s∈[0,t]

||∇S(·, s)||L∞ ≤ c

(

sup
s∈[0,t]

||ρ(·, s)||L∞ + sup
s∈[0,t]

||ρ(·, s)||L1

)

.

Lemma. Now, consider a timet∗ > 0 such that
T [S, ρ] ≥ 0,∀(x, v, v′, t) ∈ R

n × V × V × [0, t∗]. Then,

sup
s∈[0,t∗]

||ρ(·, s)||L∞ ≤ max{||ρI||L∞, ρ̄} .
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Kinetic Models

Proof: First consider initial conditions such that
||ρI||L∞ ≤ ρ̄.
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Kinetic Models

Proof: First consider initial conditions such that
||ρI||L∞ ≤ ρ̄. We define

f̃ = ρ̄F − f ,

ρ̃ =

∫

V

f̃dv = ρ̄− ρ ,

S̃ = ρ̄t− S ,

ã(S̃, ρ̃) = a(S, ρ)
ρ

ρ̄− ρ
.
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Kinetic Models

(f̃ , S̃) is solution of

∂tf̃ + v · ∇f̃ = λF ρ̃+ a(S̃, ρ̃)v · ∇S̃ρ̃− λf̃ ,

∆S̃ = −ρ̃ .

with initial conditions given bỹρI = (ρ̄− ρI)F > 0 and
S̃ = 0.

Mathematical models for cell movementPart II– p. 24



Kinetic Models

(f̃ , S̃) is solution of

∂tf̃ + v · ∇f̃ = λF ρ̃+ a(S̃, ρ̃)v · ∇S̃ρ̃− λf̃ ,

∆S̃ = −ρ̃ .

with initial conditions given bỹρI = (ρ̄− ρI)F > 0 and
S̃ = 0. The turning kernels is

T̃ [S̃, ρ̃] = λF + εã(S̃, ρ̃)Fv · S̃ ≥ 0 ,

∀(x, v, v′, t) ∈ R
n × V × V × [0, t∗]. We conclude the

positivity of f̃ , then0 ≤ ρ̄F − f , which impliesρ ≤ ρ̄.
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Kinetic Models

Now considerx such thatρI(x) > ρ̄ in a neighbourhood
U of x we have

∂tf + v · ∇f = λFρ− λf .
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Kinetic Models

Now considerx such thatρI(x) > ρ̄ in a neighbourhood
U of x we have

∂tf + v · ∇f = λFρ− λf .

This implies

eλtf(x, v, t) = f (x− vt, v, t) +

∫ t

0

eλsλFρ (x− v(t− s), s) ds ,
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Kinetic Models

Now considerx such thatρI(x) > ρ̄ in a neighbourhood
U of x we have

∂tf + v · ∇f = λFρ− λf .

This implies

eλtf(x, v, t) = f (x− vt, v, t) +

∫ t

0

eλsλFρ (x− v(t− s), s) ds ,

and then

eλtρ(x, t) ≤ ||ρI||L∞ +

∫ t

0

eλsλ||ρ(·, s)||L∞(U)ds .
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Kinetic Models

and then

eλtρ(x, t) ≤ ||ρI||L∞ +

∫ t

0

eλsλ||ρ(·, s)||L∞(U)ds .
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Kinetic Models

and then

eλtρ(x, t) ≤ ||ρI||L∞ +

∫ t

0

eλsλ||ρ(·, s)||L∞(U)ds .

Finally, using Gronwall’s lemma:

||ρ(·, t)||L∞(U) ≤ ||ρI||L∞
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Kinetic Models

Proof: (of the theorem)We put together these lemmas:
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Proof: (of the theorem)We put together these lemmas:

||∇S||L∞ is bounded by||ρ||L∞.
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Kinetic Models

Proof: (of the theorem)We put together these lemmas:

||∇S||L∞ is bounded by||ρ||L∞.

Whenever the turning kernel is positive,||ρ||L∞ is
uniformly-in-time bounded.
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Kinetic Models

Proof: (of the theorem)We put together these lemmas:

||∇S||L∞ is bounded by||ρ||L∞.

Whenever the turning kernel is positive,||ρ||L∞ is
uniformly-in-time bounded.

This implies the||∇S||L∞ is uniformly in time
bounded.
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Kinetic Models

Proof: (of the theorem)We put together these lemmas:

||∇S||L∞ is bounded by||ρ||L∞.

Whenever the turning kernel is positive,||ρ||L∞ is
uniformly-in-time bounded.

This implies the||∇S||L∞ is uniformly in time
bounded.

Then,Tε[S, ρ] = λF + εa(S, ρ)Fv · ∇S is positive
for smallε, for any time.
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Kinetic Models

Proof: (of the theorem)We put together these lemmas:

||∇S||L∞ is bounded by||ρ||L∞.

Whenever the turning kernel is positive,||ρ||L∞ is
uniformly-in-time bounded.

This implies the||∇S||L∞ is uniformly in time
bounded.

Then,Tε[S, ρ] = λF + εa(S, ρ)Fv · ∇S is positive
for smallε, for any time.

We do everything again!

Mathematical models for cell movementPart II– p. 27



Kinetic Models

Theorem. (C., Kang) With

Tε,µ[S, ρ] = ψ

(

S

(

x+
ε

1 + µρ
v

)

− S (x, t)

)

the solution exists globally.
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General Picture

Consider akinetic modelMε with a certain
non-dimensional parameterε > 0.

Mathematical models for cell movementPart II– p. 29



General Picture

Consider akinetic modelMε with a certain
non-dimensional parameterε > 0.

Consider the solutionΨε := (fε, Sε) (microscopic
variables),
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General Picture

Consider akinetic modelMε with a certain
non-dimensional parameterε > 0.

Consider the solutionΨε := (fε, Sε) (microscopic
variables), and considerΦε := (ρε, Sε) := (

∫

V
fεdv, Sε)

(macroscopic variables).
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General Picture

Consider akinetic modelMε with a certain
non-dimensional parameterε > 0.

Consider the solutionΨε := (fε, Sε) (microscopic
variables), and considerΦε := (ρε, Sε) := (

∫

V
fεdv, Sε)

(macroscopic variables).

Let us define the limit

Φ := lim
ε→0

(ρε, Sε) .
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General Picture

Consider akinetic modelMε with a certain
non-dimensional parameterε > 0.

Consider the solutionΨε := (fε, Sε) (microscopic
variables), and considerΦε := (ρε, Sε) := (

∫

V
fεdv, Sε)

(macroscopic variables).

Let us define the limit

Φ := lim
ε→0

(ρε, Sε) .

Question:

Which is the set of equations thatΦ obey?

Mathematical models for cell movementPart II– p. 29



General Picture

Modelε > 0 Limit model ε→ 0
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General Picture

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε
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Modelε > 0 Limit model ε→ 0

Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0
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General Picture

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0

↓ ↓

Final state Ψε(T ) ? Φ(T )

Mathematical models for cell movementPart II– p. 30



General Picture

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0

↓ ↓

Final state Ψε(T ) ? Φ(T )

If

Φ(t) = lim
ε→0

Φε(t) , t < T

(in some sense) thenM is the limit model ofMε.
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