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Overview – Today

Kinetic and Keller-Segel description of chemotaxis.

Formal and rigorous convergence of solutions.

Keller-Segel models after blow up time.
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General Picture

Consider akinetic model Mε with a certain
non-dimensional parameterε > 0.
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General Picture

Consider akinetic model Mε with a certain
non-dimensional parameterε > 0.

Consider the solutionΨε := (fε, Sε) (microscopic
variables), and considerΦε := (ρε, Sε) := (

∫

V
fεdv, Sε)

(macroscopic variables).
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General Picture

Consider akinetic model Mε with a certain
non-dimensional parameterε > 0.

Consider the solutionΨε := (fε, Sε) (microscopic
variables), and considerΦε := (ρε, Sε) := (

∫

V
fεdv, Sε)

(macroscopic variables).

Let us define the limit

Φ := lim
ε→0

(ρε, Sε) .
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General Picture

Consider akinetic model Mε with a certain
non-dimensional parameterε > 0.

Consider the solutionΨε := (fε, Sε) (microscopic
variables), and considerΦε := (ρε, Sε) := (

∫

V
fεdv, Sε)

(macroscopic variables).

Let us define the limit

Φ := lim
ε→0

(ρε, Sε) .

Question:

Which is the set of equations thatΦ obey?
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General Picture

Modelε > 0 Limit model ε→ 0
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Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε
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General Picture

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0
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General Picture

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0

↓ ↓

Final state Ψε(T ) ? Φ(T )
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General Picture

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0

↓ ↓

Final state Ψε(T ) ? Φ(T )

If

Φ(t) = lim
ε→0

Φε(t) , t < T

(in some sense) thenM is the limit model ofMε.
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Re-scaling

Let us go back to the Othmer-Dunbar-Alt model:

∂tf + v · ∇f =

∫

V

(T [S, ρ]f ′ − T ∗[S, ρ])dv′ .
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Re-scaling

Let us go back to the Othmer-Dunbar-Alt model:

∂tf + v · ∇f =

∫

V

(T [S, ρ]f ′ − T ∗[S, ρ])dv′ .

Re-scaling

x̄ = x/x0 , t̄ = t/t0 , v̄ = v/v0 ,

T̄ = T/T0 , S̄ = S/S0 , ρ̄ = ρ/ρ0 ,

f̄ = f/f0 .
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Re-scaling

∂f

∂t
+

v0

x0/t0
v · ∇f = T0v

n
0 t0

∫

V

(Tf ′ − T ∗f) dv′ ,

∂S

∂t
=

t0
x2

0

D0∆S +
α1ρ0t0
S0

ρ− α2t0S ,

ρ =
f0v

n
0

ρ0

∫

V

f dv .
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Re-scaling

∂f

∂t
+

v0

x0/t0
v · ∇f = T0v

n
0 t0

∫

V

(Tf ′ − T ∗f) dv′ ,

∂S

∂t
=

t0
x2

0

D0∆S +
α1ρ0t0
S0

ρ− α2t0S ,

ρ =
f0v

n
0

ρ0

∫

V

f dv .

We impose thediffusive scaling: t0 ≈ x2
0, normalisations

and

ε =
x0/t0
v0

.
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Re-scaling

∂f

∂t
+

1

ε
v · ∇f =

1

ε2

∫

V

(Tεf
′ − T ∗

ε f) dv′ ,

∂S

∂t
= ∆S + ρ− S ,

ρ =

∫

V

f dv .

The kernelT depends onε...
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Re-scaling

∂fε

∂t
+

1

ε
v · ∇fε =

1

ε2

∫

V

(Tεf
′
ε − T ∗

ε fε) dv
′ ,

∂Sε

∂t
= ∆Sε + ρε − Sε ,

ρε =

∫

V

fε dv .

The solution depends onε...
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Kinetic Model

The previously defined turning kernels are written as

Tε[S, ρ] = λ(S, ρ)F + εa(S, ρ)v · ∇S ,

Tε[S, ρ] = ψ(S(x + εµ(ρ)v, t) − S(x, t))F .
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Kinetic Model

The previously defined turning kernels are written as

Tε[S, ρ] = λ(S, ρ)F + εa(S, ρ)v · ∇S ,

Tε[S, ρ] = ψ(S(x + εµ(ρ)v, t) − S(x, t))F .

Note that in both case the zeroth and first order terms inε
are the same.
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Kinetic Model

The previously defined turning kernels are written as

Tε[S, ρ] = λ(S, ρ)F + εa(S, ρ)v · ∇S ,

Tε[S, ρ] = ψ(S(x + εµ(ρ)v, t) − S(x, t))F .

Note that in both case the zeroth and first order terms inε
are the same.

Tε[S, ρ] = T0[S, ρ] + εT1[S, ρ] + · · ·
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Kinetic Model

The previously defined turning kernels are written as

Tε[S, ρ] = λ(S, ρ)F + εa(S, ρ)v · ∇S ,

Tε[S, ρ] = ψ(S(x + εµ(ρ)v, t) − S(x, t))F .

Note that in both case the zeroth and first order terms inε
are the same.

Tε[S, ρ] = T0[S, ρ] + εT1[S, ρ] + · · ·

We define

Tκ[f ] =

∫

V

(T ∗
κ [S, ρ]f − Tκ[S, ρ]f

′)dv′ , κ = 0, 1, 2, · · ·
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Kinetic Models

We also consider theε expansion of the solutions

fε = f0 + εf1 + · · · ,

Sε = S0 + εS1 + · · · ,

and define

ρk =

∫

V

fκdv , κ = 0, 1, 2, · · ·
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Kinetic Models

We also consider theε expansion of the solutions

fε = f0 + εf1 + · · · ,

Sε = S0 + εS1 + · · · ,

and define

ρk =

∫

V

fκdv , κ = 0, 1, 2, · · ·

We put all these expansions in the kinetic model and
solve for each order ofε.
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Kinetic Models

To orderε0:

0 = T0(f0) ,

ρ0 =

∫

V

f0dv ,

−∆S0 = ρ0 .
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Kinetic Models

To orderε0:

0 = T0(f0) ,

ρ0 =

∫

V

f0dv ,

−∆S0 = ρ0 .

f0(x, v, t) = ρ0(x, t)F (v) .
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Examples

To orderε1

v · ∇f0 = −(T1(f0) + T0(f1)) ,

ρ1 =

∫

V

f1dv ,

−∆S1 = ρ1 .
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Examples

To orderε1

v · ∇f0 = −(T1(f0) + T0(f1)) ,

ρ1 =

∫

V

f1dv ,

−∆S1 = ρ1 .

We define:

D(S, ρ) =
1

nλ[S]

∫

V

v2Fdv,

Γ(S, ρ)] = χ(S, ρ)∇S ,

χ(S, ρ) =
1

nλ(S, ρ)
a(S, ρ)

∫

V

v2Fdv.
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Examples

We multiply the first equation byv and integrate overV

D(S0, ρ0)∇ρ0 = χ(S0, ρ0)∇S0ρ0 −

∫

V

vf1dv .
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Examples

We multiply the first equation byv and integrate overV

D(S0, ρ0)∇ρ0 = χ(S0, ρ0)∇S0ρ0 −

∫

V

vf1dv .

So
∫

v

vf1dv = χ(S0, ρ0)∇S0ρ0 −D(S0, ρ0)∇ρ0 .
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Examples

To orderε2 and integrating overV we get

∂tρ0 + ∇ ·

∫

V

vf1dv = 0 .
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Examples

To orderε2 and integrating overV we get

∂tρ0 + ∇ ·

∫

V

vf1dv = 0 .

We rewrite as

∂tρ0 = ∇ · (D(S0, ρ0)∇ρ0 − χ(S0, ρ0)∇S0ρ0) .
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Examples

To orderε2 and integrating overV we get

∂tρ0 + ∇ ·

∫

V

vf1dv = 0 .

We rewrite as

∂tρ0 = ∇ · (D(S0, ρ0)∇ρ0 − χ(S0, ρ0)∇S0ρ0) .

This equation with

−∆S0 = ρ0

is the Keller-Segel model.
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General Picture (again...)

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI
ε −→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0

↓ ↓

Final state Ψε(T ) ? Φ(T )

If

Φ(t) = lim
ε→0

Φε(t) , t < T

(in some sense) thenM is the limit model ofMε.
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Rigorous results

Theorem. (C., Markowich, Perthame, Schmeiser, 2004;
Hwang, Kang, Stevens, 2005, C., Rodrigues, 2005):
Consider turning kernels Tε depending on Sε, ∇Sε and
ρε under mild assumptions. Then, the solution of the
kinetic model (fε, Sε) is such that

ρε → ρ0 in L2
loc(R

n) ,

Sε → S0 in Lq
loc(R

n) , 1 ≤ q <∞ ,

∇Sε → ∇S0 in Lq
loc(R

n) , 1 ≤ q <∞.

where (ρ0, S0) is the solution of the associated
Keller-Segel model.
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Rigorous Results

By mild assumptions we mean:

φS
ε [ρ, S] ≥ γ(1 − εΛ(||S||W 1,∞))FF ′ ,

∫

V

φA
ε [ρ, S]2

FφS
ε [ρ, S]

dv′ ≤ ε2Λ(||S||W 1,∞) ,

where

φS
ε :=

Tε[S, ρ]F
′ + T ∗

ε [ρ, S]F

2
,

φA
ε :=

Tε[S, ρ]F
′ − T ∗

ε [ρ, S]F

2
,

and other more technical ones.
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Rigorous Results

Proof: Rather long. We only outline it. We suppose
n = 3, the casen = 2 is similar.
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Rigorous Results

Proof: Rather long. We only outline it. We suppose
n = 3, the casen = 2 is similar.
We first prove that

||S||Lp + ||S||C1,α ≤ c (||ρ||L1 + ||ρ||Lq) .
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Rigorous Results

Proof: Rather long. We only outline it. We suppose
n = 3, the casen = 2 is similar.
We first prove that

||S||Lp + ||S||C1,α ≤ c (||ρ||L1 + ||ρ||Lq) .

Then, we prove

1

q

d

dt

∫∫

f q
ε

F
dv dx+

1

4ε2

∫∫

φε[S, ρ]

(

fε

F
−
f ′

ε

F ′

)

(

(

fε

F

)q−1

−

(

f ′

ε

F ′

)q−1
)

dv′ dv dx

≤
cq
2ε2

∫∫

φε[S, ρ]
2

FφS
ε [S, ρ]

f q
ε

F q−1
dv′ dv dx .

Mathematical models for cell movementPart III– p. 17



Rigorous Results

This simplifies to

d

dt

∫∫

f q
ε

F q−1
dv dx ≤

qcq
2

Λ (||Sε(·, t)||W 1,∞)

∫∫

f q
ε

F q−1
dv dx .
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Rigorous Results

This simplifies to

d

dt

∫∫

f q
ε

F q−1
dv dx ≤

qcq
2

Λ (||Sε(·, t)||W 1,∞)

∫∫

f q
ε

F q−1
dv dx .

We also have that

||S||C1,α ≤ c (1 + ||ρ||Lq) ≤ c

(

1 +

(
∫∫

f q
ε

F q−1
dv dx

)1/q
)

.
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Rigorous Results

Now, we use Gronwall’s inequality to prove that

fε ∈ L∞

(

0, t∗;L1

+(R3 × V ) ∪ Lq

(

R
3 × V ;

dx dv dt

F

))

,

Sε ∈ L∞(0, t∗;Lp ∪ C1,α(R3)) ,

for certainα (that depends on the regularity of the initial
condition),p ∈ (3,∞) andε-independentt∗ > 0.
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Rigorous Results

We also define

rε =
fε − ρεF

ε
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Rigorous Results

We also define

rε =
fε − ρεF

ε

and prove that
∫ t∗

0

∫∫

Rn×V

r2
ε

F
dv dx dt ≤ c .
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Rigorous Results

This is enough to prove the weak convergence offε, Sε,
and∇Sε.
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Rigorous Results

This is enough to prove the weak convergence offε, Sε,
and∇Sε.
But, as the turning kernel depends onρ, S and∇S, we
need to provestrong convergence of these functions (in
the limit ε→ 0).
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Rigorous Results

Define

Jε =
1

ε

∫

V

vfεdv =

∫

V

vrε ∈ L2(0, t∗;L2(R3)) .
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Rigorous Results

Define

Jε =
1

ε

∫

V

vfεdv =

∫

V

vrε ∈ L2(0, t∗;L2(R3)) .

Then

|Jε|
2 ≤

∫

V

|v|2Fdv
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Rigorous Results

Define

Jε =
1

ε

∫

V

vfεdv =

∫

V

vrε ∈ L2(0, t∗;L2(R3)) .

Then

|Jε|
2 ≤

∫

V

|v|2Fdv

∂tρε + ∇ · Jε = 0 .
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Rigorous Results

Define

SJ,ε = Jε ∗
1

4π|x|
.
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Rigorous Results

Define

SJ,ε = Jε ∗
1

4π|x|
.

By elliptic regularity,SJ,ε ∈ L2(0, t∗;H2
loc(R

3))
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Rigorous Results

Define

SJ,ε = Jε ∗
1

4π|x|
.

By elliptic regularity,SJ,ε ∈ L2(0, t∗;H2
loc(R

3)) and
then, from

∂t∇Sε + ∇ (∇ · SJ,ε) = 0 ,

we conclude that∂t∇Sε ∈ L2(0, t∗;L2
loc(R

3)).
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Rigorous Results

Define

SJ,ε = Jε ∗
1

4π|x|
.

By elliptic regularity,SJ,ε ∈ L2(0, t∗;H2
loc(R

3)) and
then, from

∂t∇Sε + ∇ (∇ · SJ,ε) = 0 ,

we conclude that∂t∇Sε ∈ L2(0, t∗;L2
loc(R

3)). This
implies the strong convergence of∇Sε to∇S0.
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Rigorous Results

Define

SJ,ε = Jε ∗
1

4π|x|
.

By elliptic regularity,SJ,ε ∈ L2(0, t∗;H2
loc(R

3)) and
then, from

∂t∇Sε + ∇ (∇ · SJ,ε) = 0 ,

we conclude that∂t∇Sε ∈ L2(0, t∗;L2
loc(R

3)). This
implies the strong convergence of∇Sε to∇S0.

The strong convergence ofSε to S0 is proved
analogously.
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Rigorous Results

Now, we prove the strong convergence ofρε.
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Rigorous Results

Now, we prove the strong convergence ofρε. We write

fε = ρεF + εrε .
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Rigorous Results

This implies

λ[S0, ρ0]D[S0, ρ0]∇ρε = ρε

∫

V

Tε[Sε, ρε](F )

ε
vdv

+

∫ ∫

V ×V

(Tε[Sε, ρε]r
′
ε − T ∗

ε [Sε, ρε]rε) vdv dv
′

−ε∇ ·

∫

V

v ⊗ vrεdv − ε∂t

∫

V

vfεdv .
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Rigorous Results

This implies

λ[S0, ρ0]D[S0, ρ0]∇ρε = ρε

∫

V

Tε[Sε, ρε](F )

ε
vdv

+

∫ ∫

V ×V

(Tε[Sε, ρε]r
′
ε − T ∗

ε [Sε, ρε]rε) vdv dv
′

−ε∇ ·

∫

V

v ⊗ vrεdv − ε∂t

∫

V

vfεdv .

Using the previous estimates and Rellich’s theorem, we
conclude thatλD∇ρε is in a compact set of
H−1

loc (R
3 × (0, t∗)).
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Rigorous Results

Using the fact thatλ is bounded from below and thatD
is positive defined, we conclude that
∇ρε ∈ H−1

loc (R
3 × (0, t∗)).
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Rigorous Results

Using the fact thatλ is bounded from below and thatD
is positive defined, we conclude that
∇ρε ∈ H−1

loc (R
3 × (0, t∗)).

Finally, we consider

Xε = (Jε, ρε) , Yε = (0, ρε) ,
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Rigorous Results

Using the fact thatλ is bounded from below and thatD
is positive defined, we conclude that
∇ρε ∈ H−1

loc (R
3 × (0, t∗)).

Finally, we consider

Xε = (Jε, ρε) , Yε = (0, ρε) ,

and then

div(x,t)Xε = 0 ,

curl(x,t)Yε = −curlxρε .
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Rigorous Results

The RHS of both equations lie inH−1
loc (R

3 × (0, t∗)).
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Rigorous Results

The RHS of both equations lie inH−1
loc (R

3 × (0, t∗)).
Now, we use the div-curl lemma and conclude the
convergence ofρε to ρ0.
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Consequences

It is possible to give examples of kinetic models
with global existence that converges to KS models
with blow up:

Tε[S](x, v, v′, t) = F (v)Ψ(S(x + εv, t) − S(x, t))

with 0 < Ψmin ≤ Ψ(y) ≤ Ay +B.
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Consequences

It is possible to give examples of kinetic models
with global existence that converges to KS models
with blow up:

Tε[S](x, v, v′, t) = F (v)Ψ(S(x + εv, t) − S(x, t))

with 0 < Ψmin ≤ Ψ(y) ≤ Ay +B.

For kinetic models with preventions of overcrowding
it is possible to reproduce the HP results.
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Beyond Keller-Segel

Theorem. (C., Kang) With

Tε,µ[S, ρ] = ψ

(

S

(

x+
ε

1 + µρ
v

)

− S (x, t)

)

the solution exists globally and the drift-diffusion limit
(globally in time) is the Velazquez’ model.
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Beyond Keller-Segel
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Blow up Classical Keller Segel

global−in−time convergence

local−in−time convergence

Global existence of solutions
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Beyond Keller-Segel

Consider the Classical Keller-Segel model.
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Beyond Keller-Segel

Consider the Classical Keller-Segel model.

If the initial conditions are given by two small
aggregates, both with mass larger than the minimal
required for blow up, and these aggregates are far
enough, we can expect that both will converge (in finite
time) to Dirac-delta distributions.
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Beyond Keller-Segel

m >m

t=0

m >m

1 0

2 0
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Beyond Keller-Segel

01

2 0

1

m >m

t

m >m
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Beyond Keller-Segel

m >m

t

m >m

1 0

2 0

2

xx1 2
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Beyond Keller-Segel

Question:How do these aggragates interact?
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Beyond Keller-Segel

Question:How do these aggragates interact?

Answer: Velázquez, 2004.
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Beyond Keller-Segel

Question:How do these aggragates interact?

Answer: Velázquez, 2004.

The final system of ODE (with some simplifications), for
two aggregates, is given by

ẋ1(t) = −
Γ(m2)m1

2π

x1(t) − x2(t)

|x1(t) − x2(t)|2
,

ẋ2(t) = −
Γ(m1)m2

2π

x2(t) − x1(t)

|x2(t) − x1(t)|2
,

whereΓ(m) ∈ (0, 1) is a given function such that

lim
m→8π+

Γ(m) = 1 ,

lim Γ(m) = 0 .
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Beyond Keller-Segel

Question:Can we use kinetic models to extend the
Keller-Segel model after the blow up time?
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