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Supervised learning

In the first part, I introduced molecular diagnosis as a problem of

classification in high dimensions.

From given patient expression profiles and labels, we derive a classifier
to predict future patients.

By the labels we are given a structure in the data. Our task:

extract and generalize the structure. This is a problem if supervised
learning.

It is different from unsupervised learning, where we have to find a

structure in the data by ourselves: Clustering, class discovery.
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What’s to come

This part will deal with

1. Support vector machines
−→ Maximal margin hyperplanes, non-linear similarity measures

2. Model selection and assessment
−→ Traps and pitfalls, or: How to cheat.

3. Interpretation of results
−→ what do classifiers teach us about biology?
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Support Vector Machines
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Which hyperplane is the best?

C D

A B
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No sharp knive, but a fat plane

Samples

Samples
with negative

label

with positive
label

FAT P
LANE
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Separate the training set with maximal margin

Separatin
g

Hyp
erplane

Margin
Samples

Samples
with negative

label

with positive
label

A hyperplane is a set of points x satisfying

〈w,x〉+ b = 0

corresponding to a decision function

c(x) = sign(〈w,x〉+ b).

There exists a unique maximal margin hyperplane solving

maximize
w,b

min{‖x− x(i)‖ : x ∈ Rp, 〈w,x〉+ b = 0, i = 1, . . . , N}
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Hard margin SVM

First we scale (w, b) with respect to x(1), . . . ,x(N) such that

min
i
|〈w,x(i)〉+ b| = 1.

The points closest to the hyperplane now have a distance of 1/‖w‖.

Florian Markowetz, Molecular diagnosis, part II, 2005 April 7



Ber
lin

C
e
n

te
r

fo
r

Genome Based
B
io

i n
fo

rm
atics

Hard margin SVM

First we scale (w, b) with respect to x(1), . . . ,x(N) such that

min
i
|〈w,x(i)〉+ b| = 1.

The points closest to the hyperplane now have a distance of 1/‖w‖.

Then the maximal margin hyperplane is the solution of the

primal optimization problem

minimize
w,b

1
2
‖w‖2

subject to yi(〈x(i),w〉+ b) ≥ 1, for all i = 1, . . . , N
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The Lagrangian

To solve the problem, introduce the Lagrangian

L(w, b, α) =
1
2
‖w‖2 −

N∑
i=1

αi(yi(〈x(i),w〉+ b)− 1).

It must be maximized w.r.t. α and minimized w.r.t w and b, i.e.

a saddle point has to be found.
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The Lagrangian

To solve the problem, introduce the Lagrangian

L(w, b, α) =
1
2
‖w‖2 −

N∑
i=1

αi(yi(〈x(i),w〉+ b)− 1).

It must be maximized w.r.t. α and minimized w.r.t w and b, i.e.

a saddle point has to be found.

KKT conditions: for all i

αi(yi(〈x(i),w〉+ b)− 1) = 0
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The Lagrangian cont’d

Derivatives w.r.t primal variables must vanish:

∂

∂b
L(w, b, α) = 0 and

∂

∂w
L(w, b, α) = 0,

which leads to ∑
i

αiyi = 0 and w =
∑

i

αiyix(i).
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The dual optimization problem

Substituting the conditions for the extremum into the Lagrangian, we

arrive at the dual optimization problem:

maximize
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj〈x(i),x(j)〉,

subject to αi ≥ 0 and
N∑

i=1

αiyi = 0.
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What are Support Vectors?

By the KKT conditions, the points

with αi > 0 satisfy

yi(〈x(i),w〉+ b) = 1

These points nearest to the

separating hyperplane are called

Support Vectors.

The expansion of the w only

depends on them.

Separatin
g

Hyp
erplane

Margin
Samples

Samples
with negative

label

with positive
label
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Maximal margin hyperplanes

Capacity decreases with increasing margin!

Consider hyperplanes 〈w,x〉 = 0, where w is normalized such that

mini |〈w,xi〉| = 1 for X = {x1, . . . ,xN}.

The set of decision functions fw = sign(〈w,x〉) defined on X
satisfying ‖w‖ ≤ Λ, has a VC dimension h satisfying

h ≤ R2Λ2

Here, R is the radius of the smallest sphere centered at the origin

and containing the training data [8].
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Maximal margin hyperplanes

With margin γ1 we separate 3 points, with margin γ2 only two.
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Non-separable training sets

Use linear separation, but admit training errors and margin violations.

Separatin
g

Hyp
erplane

Penalty of error: distance to hyperplane multiplied by error cost C.
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Soft margin primal problem

We relax the separation constraints to

yi(〈x(i),w〉+ b) ≥ 1− ξi

and minimize over w and b the objective function

1
2
‖w‖2 + C

N∑
i=1

ξi.

Writing down the Lagrangian, computing derivatives w.r.t primal

variables, substituting them back into the objective function . . .

Florian Markowetz, Molecular diagnosis, part II, 2005 April 15



Ber
lin

C
e
n

te
r

fo
r

Genome Based
B
io

i n
fo

rm
atics

Soft margin dual problem

. . . gives the dual problem

maximize
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj〈x(i),x(j)〉,

subject to 0 ≤ αi≤ C and
N∑

i=1

αiyi = 0.

It differs from the hard margin dual problem only in an upper

bound on αi, which limits the influence of single points.
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Support vectors revisited

There are three kinds of support

vectors in soft margin SVMs:

1. points on the boundary,

2. margin violations,

3. training errors.

SV SV SV SV
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Regularized Risk

How do SVMs fit in the risk framework?

In constructing support vector machines

we minimize the empirical risk with soft
margin loss under the additional constrain of

maximizing the margin.

This is called a regularized risk [8].

We minimize the risk over a class of functions

characterized by big margins (and thus, low

capacity).
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The end?

What we learned so far is

1. how to construct maximal margin hyperplanes (with soft margin),

2. capacity decreases with increasing margin,

3. Maximal margin hyperplanes minimize the regularized risk (and

not the empirical risk).

For microarray data, you will seldom need more than a maximal

margin hyperplane. This is the most simple example of a support
vector machine. What is missing for a full SVM is a concept of

nonlinear similarity measures called kernels.
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Separation may be easier in higher dimensions

feature
map

separating
hyperplane

complex in low dimensions simple in higher dimensions
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The kernel trick

Maximal margin hyperplanes in feature space

If classification is easier in a high-dimenisonal feature space, we would

like to build a maximal margin hyperplane there.

The construction depends on inner products ⇒ we will have to

evaluate inner products in the feature space.

This can be computationally intractable, if the dimensions become

too large!

Resort Use a function that lives in low dimensions, but behaves

like an inner product in high dimensions.
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Kernels

A kernel is a (non)linear similarity measure defined on some set X ,

which needs not to be an inner product space. (For microarray data,

of course X = Rp)

k : X × X → R

Florian Markowetz, Molecular diagnosis, part II, 2005 April 22



Ber
lin

C
e
n

te
r

fo
r

Genome Based
B
io

i n
fo

rm
atics

Kernels

A kernel is a (non)linear similarity measure defined on some set X ,

which needs not to be an inner product space. (For microarray data,

of course X = Rp)

k : X × X → R
Kernels are defined by

1. mapping the data into some inner product space H and

2. then computing the inner product there:

k(x, x′) = 〈Φ(x),Φ(x′)〉, with Φ : X → H
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Examples of Kernels

In classification mostly used are ldots

linear k(x, x′) = 〈x,x′〉

polynomial k(x, x′) = (γ〈x,x′〉+ c0)d

radial basis function k(x, x′) = exp
(
−γ‖x− x′‖2

)
. . . and there are many others tailored to specific purposes.

Florian Markowetz, Molecular diagnosis, part II, 2005 April 23



Ber
lin

C
e
n

te
r

fo
r

Genome Based
B
io

i n
fo

rm
atics

Why use kernels?

1. Being able to compute dot products amounts to being able to

carry out all geometric constructions that can be formulated in

terms of angles, lengths, and distances.

2. in H we can use linear algebra and analytic geometry and have

simple interpretations,

3. freedom to choose kernel map Φ enables us to design a large

variety of similarity measures and learning algorithms,

4. Choice of kernel (and kernel parameters) controls capacity of

classifier.
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Support vector machines

A support vector machine is a marriage between

a maximal margin hyperplane and a kernel function.

We saw how to construct a maximal margin hyperplane using inner

products like 〈w,x〉.

Just exchange each inner product by a kernel k(·, ·) and you get a

full SVM.

The maximal margin hyperplane is constructed in feature space H,

not in input space X .
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Model assessment
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Model selection and assessment

We have to distinguish two different objectives:

Model selection: Estimating the performance of different models in

order to choose the (approximate) best one.

Model assessment: Having chosen a final model, estimating its

prediction error (generalization error) on new data.
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Model selection

Best of all worlds

Train Validation Test
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Model selection

Best of all worlds

Train Validation Test

Also OK

Train and Validation Test
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Model selection

Best of all worlds

Train Validation Test

Also OK

Train and Validation Test

The world we (usually) live in

Train and Validation

Florian Markowetz, Molecular diagnosis, part II, 2005 April 28
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Cross-validation

Efficient way to estimate the error rate:

Train Train Train Train Test

Florian Markowetz, Molecular diagnosis, part II, 2005 April 29
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Cross-validation

Efficient way to estimate the error rate:

Train Train Train Train Test

Train Train Train Test Train
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Cross-validation

Efficient way to estimate the error rate:

Train Train Train Train Test

Train Train Train Test Train

...

Test Train Train Train Train
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K-fold cross-validation

1. Given: a training set D of size N

2. Divide D into K disjoint subsets D1, . . . ,DK of equal size N/K

3. For each Di:

Train a classifier on D without Di

Compute prediction error on Di

4. Output the average error

Florian Markowetz, Molecular diagnosis, part II, 2005 April 30
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Cross validation estimate of risk

Indexing function κ : {1, . . . , N} 7→ {1, . . . ,K}

Let c−k(x) be classifier fitted with k-th part of data removed.

The cross validation estimate Rcv[c] of risk R[c] is defined by

Rcv[c] =
1
N

N∑
i=1

l( x(i), c−κ(i)(x(i)), yi).
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Cross validation estimate of risk

Indexing function κ : {1, . . . , N} 7→ {1, . . . ,K}

Let c−k(x) be classifier fitted with k-th part of data removed.

The cross validation estimate Rcv[c] of risk R[c] is defined by

Rcv[c] =
1
N

N∑
i=1

l( x(i), c−κ(i)(x(i)), yi).

Remp[x] =
1
N

N∑
i=1

l( x(i), c(x(i)), yi)
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A pitfall in model selection

Very optimistic cross-validation results are achieved by

1. selecting the most discriminative genes on the whole dataset,

2. performing cross-validation on reduced profiles.

What goes wrong?
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A pitfall in model selection

Very optimistic cross-validation results are achieved by

1. selecting the most discriminative genes on the whole dataset,

2. performing cross-validation on reduced profiles.

What goes wrong?

For honest error estimates, the test sets in cross-validation have to

remain untouched.

But here test sets were already used for feature selection!

This makes the error estimate overoptimistic [9, 1].
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In-loop versus out-of-loop
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One more complication

To select between different models we do 10-fold cross validation with

in-loop feature selection. We choose the best model.

Is the CV performance of this model a honest estimate of
generalization performance for model assessment?
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One more complication

To select between different models we do 10-fold cross validation with

in-loop feature selection. We choose the best model.

Is the CV performance of this model a honest estimate of
generalization performance for model assessment?

No, it will be overoptimistic,
because we optimized over all models.
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Nested-loop cross validation

Outer cross-validation

Estimate misclassification rate

Training set inner CV

Test set inner CV

Inner cross-validation

Tune parameters

Use tuned
parameters

Use tuned
parameters

Use tuned
parameters

Training set outer CV

Test set outer CV

[3, 7]
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Clever methods of overfitting [5]

General overfitting:
over-representing the performance of systems.

Traditional overfitting: Train a complex predictor on too-few

examples.
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Clever methods of overfitting [5]

General overfitting:
over-representing the performance of systems.

Traditional overfitting: Train a complex predictor on too-few

examples.

Parameter tweak overfitting: Use a learning algorithm with

many parameters. Choose the parameters based on the test set

performance. For example, choosing the features so as to optimize

test set performance can achieve this.
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Clever methods of overfitting [5]

Human-loop overfitting: Use a human as part of a learning

algorithm and don’t take into account overfitting by the entire

human/computer interaction.
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Clever methods of overfitting [5]

Human-loop overfitting: Use a human as part of a learning

algorithm and don’t take into account overfitting by the entire

human/computer interaction.

Data set selection: Chose to report results on some subset of

datasets where your algorithm performs well.
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Clever methods of overfitting [5]

Human-loop overfitting: Use a human as part of a learning

algorithm and don’t take into account overfitting by the entire

human/computer interaction.

Data set selection: Chose to report results on some subset of

datasets where your algorithm performs well.

Old datasets: Create an algorithm for the purpose of improving

performance on old datasets.
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Clever methods of overfitting [5]

Human-loop overfitting: Use a human as part of a learning

algorithm and don’t take into account overfitting by the entire

human/computer interaction.

Data set selection: Chose to report results on some subset of

datasets where your algorithm performs well.

Old datasets: Create an algorithm for the purpose of improving

performance on old datasets.

Overfitting by review: 10 people submit a paper to a conference.

The one with the best result is accepted.
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Interpretation of results
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Is the predictive signature unique?

Typical scenario:

1. You select a number of genes (from all the genes on the microarray)

and find that they support a well generalizing classifier.

2. You ask your favorite biologist to make a story out of the gene list.

3. Usually some interesting genes are found.
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Is the predictive signature unique?

Typical scenario:

1. You select a number of genes (from all the genes on the microarray)

and find that they support a well generalizing classifier.

2. You ask your favorite biologist to make a story out of the gene list.

3. Usually some interesting genes are found.

4. Is this gene set unique?
Are there other sets working as well?
Do the genes tell us something about the disease causes?
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An experiment by Ein-Dor et al. [2]

Data from single experiment (van’t Veer et al., 2002) on breast

cancer patients. Consists of 96 samples with 5852 genes. Van’t Veer

et al. randomly split the patients into training set (77) and test set

(19).

They found the 70 genes most highly correlated with disease

outcome to form a predictive signature.
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An experiment by Ein-Dor et al. [2]

Data from single experiment (van’t Veer et al., 2002) on breast

cancer patients. Consists of 96 samples with 5852 genes. Van’t Veer

et al. randomly split the patients into training set (77) and test set

(19).

They found the 70 genes most highly correlated with disease

outcome to form a predictive signature.

Ein-Dor et al. build a set of classifiers on consecutive groups of
70 genes found on 1000 random partitionings of the data.
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Many predictive gene sets

[2]
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The message

Why is there no overlap between predictive gene sets?

Lack of agreement could be attributed to different chips, different

methods of sample preparation, mRNA extraction, analysis of data,

genuine differences between patients (tumor grade, stage, ...).

But even without these sources of variations,

the biological signal is widely spread!

There is no golden needle hidden!
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Interpreting gene lists

Why NOT to do it:

1. to find new insights into biology

2. to find the cause of the disease

For these tasks, do testing! Which has it’s own problems: see the

talk by Stephane Robin on Finding differential genes and FDR.

Why to do it:
Additional reassurance that the model makes biological sense.
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Top-down and bottom-up

Message: Don’t hope for top-down approaches to work!

To get an interpretable classifier, better try bottom-up approaches:
Select genes from biological knowledge and build classifiers on them.

Example: Nearest Shrunken Centroids on Gene Ontology hierarchy

by Lottaz and Spang [6].
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Summary

1. Classification in high dimensions
−→ a fight against overfitting

2. Discriminant Analysis
−→ Gaussian assumption, feature selection

3. Support vector machines
−→ Maximal margin hyperplanes, non-linear similarity measures

4. Model selection and assessment
−→ Traps and pitfalls, or: How to cheat.

5. Interpretation of results
−→ what do classifiers teach us about biology?
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Recommendations
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Software for microarray analysis

www.R-project.org
R is a language and environment for statistical

computing and graphics. Free software!

www.bioconductor.org
Bioconductor is open source and open

development software project for the analysis and

comprehension of genomic data.

Florian Markowetz, Molecular diagnosis, part II, 2005 April 47



Ber
lin

C
e
n

te
r

fo
r

Genome Based
B
io

i n
fo

rm
atics

Courses in Practical Microarray Analysis

Regularly held courses teach basic techniques of practical gene

expression data analysis. For infos go to:

http://compdiag.molgen.mpg.de/ngfn

Topics: Quality control, Data preprocessing and normalization,

Identification of differentially expressed genes, Clustering,

Classification and molecular diagnosis, Computer lab classes.

Courses are free!
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Thank you! Questions?
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