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Cellular networks

Figure from http://array.mbb.yale.edu/yeast/transcription/
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Modelling networks

High-throughput assays can probe cells

at a genome-wide scale.

Very prominent: microarrays that

measure mRNA transcript quantitites.

Need to use probabilistic models, which

account for

• measurement noise,

• variability in the biological system, and

• aspects of the system not captured by

the model.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 2
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Clustering by coexpression
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Assumption:

Coexpression ∼ coregulation

If genes show the same

expression profiles they follow

the same regulatory regimes

[7, 25].

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 3
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Correlation graphs

An expression profile is a random vector X = (X1, . . . , Xp).

Correlation graph: Depict genes as vertices of a graph and draw an

edge (i, j) iff the correlation coefficient ρij 6= 0.

Advantage: This representation of the marginal dependence

structure is easy to interpret and can be accurately estimated even if

p� N .

Application: Stuart et. al [28] build a graph from coexpression across

multiple organisms.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 4
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Problems of correlation based approaches

We cannot distinguish direct from indirect dependencies!

Three reasons, why X, Y , and Z are highly correlated:

X Y Z X Z

Y
X Z

Y

H

As a cure:
search for correlations which cannot be explained by other variables.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 5
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Overview

1. Gaussian graphical models
- conditional independence

- partial correlations

2. Bayesian networks
- d-separation

- PC algorithm

- equivalence of networks

3. Bayesian structure learning
- marginal likelihood

- search strategies

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 6
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Part I.

Gaussian graphical models

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 7
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Conditional independence

Be X, Y, Z random variables with joint distribution P .

X is conditionally independent of Y given Z

X |= Y | Z ⇔

P (X = x, Y = y|Z = z) = P (X = x|Z = z) · P (Y = y|Z = z)

P (X = x|Y = y, Z = z) = P (X = x|Z = z)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 8
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Conditional independence: interpretation

Interpret random variables as abstract pieces of knowledge obtained

from, say, reading books [16].

Then X |= Y | Z means

Knowing Z, reading Y is irrelevant for reading X

If I already know Z,

then Y offers me no new information

to understand X.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 9
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Conditional independence in Gaussian models

• Consider a random vector X = (X1, . . . , Xp).
• Assume that X ∼ N(µ,Σ), where Σ is regular.

• Let K = Σ−1 be the concentration matrix of the distribution (aka

precision matrix).

Then it holds for i, j ∈ {1, . . . , p} with i 6= j that

Xi |= Xj | Xrest ⇔ kij = 0,

where rest = {1, . . . , p} \ {i, j} [16].

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 10
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Gaussian Graphical models (GGM)

Given a random vector X = (X1, . . . , Xp).

A Gaussian graphical model [16, 6] is an undirected graph on vertex

set V , with |V | = p .

To each vertex i ∈ V corresponds a random variable Xi ∈ X.

Draw an edge between vertices i and j if and only if kij 6= 0.

Note:
In correlation graphs we modeled via Σ, in GGMs we use K = Σ−1.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 11
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Example of a GGM

2 3

4

1 Missing edges indicate independencies:

Xi |= Xj | Xrest

X1 |= X4 | {X2, X3}
X2 |= X3 | {X1, X4}
X2 |= X4 | {X1, X3}

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 12
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Estimation from data

Likelihood

n(x;K) = (2π)−
p
2 |K|12 exp

{
−1

2
xTKx

}

Test Null-Hypothesis kij = 0 versus Alternative kij 6= 0.

• The Null-Hypothesis constrains the precision matrix K,

• the alternative leaves K unconstrained.

Likelihood ratio test statistic is asymptotically χ2 distributed [16].

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 13
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What if p� N?

Full conditional relationships can only be accurately estimated if the

number of samples N is relatively large compared to the number of

variables p.

Thus, if p� N , you can . . .

either improve your estimators of partial correlations

(e.g. Schäfer and Strimmer [23] use the Moore-Penrose pseudoinverse

and bootstrap aggregation (bagging) to stabilize the estimator.)

or resort to a simpler model.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 14
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Sparse graphical Gaussian modeling

Do not condition on the complete rest as in GGMs. Instead explore

dependency of two variables conditioned on a third [30, 31, 17, 5].

Draw an edge between vertices i and j (i 6= j) if and only if the

correlation coefficient

ρij 6= 0

and no third variable can explain the correlation:

Xi |=/ Xj | Xk for all k ∈ rest,

whrere again rest = {1, . . . , p} \ {i, j}.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 15
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Summary of part I

We have seen methods to build graphs from

1. marginal independencies

Xi |= Xj,

2. full conditional independence

Xi |= Xj | X{1,...,p}\{i,j},

3. first order independencies

Xi |= Xj | Xk ∀k ∈ {1, . . . , p} \ {i, j}.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 16
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Summary of part I

We have seen methods to build graphs from

1. marginal independencies

Xi |= Xj,

2. full conditional independence

Xi |= Xj | X{1,...,p}\{i,j},

3. first order independencies

Xi |= Xj | Xk ∀k ∈ {1, . . . , p} \ {i, j}.

Where does this lead us?

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 16
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Include all higher order dependencies

Draw an edge between vertices i and j if

Xi |=/ Xj | XS for all S ⊆ {1, . . . , p} \ {i, j}.

This includes testing marginal, first order and full conditional

independencies.

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 17
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Include all higher order dependencies

Draw an edge between vertices i and j if

Xi |=/ Xj | XS for all S ⊆ {1, . . . , p} \ {i, j}.

This includes testing marginal, first order and full conditional

independencies.

In the next part we will see:

• It will be possible to direct some of the edges.

• The resulting probabilistic model is a Bayesian network.

• Causation instead of just correlation [21, 26].

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 17
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Part II.

Bayesian networks

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 18
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Factorization of joint distribution

Given random vector X = (X1, . . . , Xp) we can always decompose

p(x) = p(x1, . . . , xp)

= p(x1, . . . , xp−1) p(xp|x1, . . . , xp−1)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 19
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Factorization of joint distribution

Given random vector X = (X1, . . . , Xp) we can always decompose

p(x) = p(x1, . . . , xp)

= p(x1, . . . , xp−1) p(xp|x1, . . . , xp−1)

= p(x1)
p∏

v=2

p(xv|x1, . . . , xv−1)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 19
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Factorization of joint distribution

Given random vector X = (X1, . . . , Xp) we can always decompose

p(x) = p(x1, . . . , xp)

= p(x1, . . . , xp−1) p(xp|x1, . . . , xp−1)

= p(x1)
p∏

v=2

p(xv|x1, . . . , xv−1)

1

2

3

Example:

p(x1, x2, x3) = p(x1) p(x2|x1) p(x3|x1, x2)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 19
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Factorization of joint distribution

Given random vector X = (X1, . . . , Xp) we can always decompose

p(x) = p(x1, . . . , xp)

= p(x1, . . . , xp−1) p(xp|x1, . . . , xp−1)

= p(x1)
p∏

v=2

p(xv|x1, . . . , xv−1)

1

2

3

Example:

p(x1, x2, x3) = p(x1) p(x2|x1) p(x3|x1, x2)

⇒ completely connected directed acyclic graph

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 19
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Bayesian network

A Bayesian Network for a random vector X consists of

1. a network structure

• directed acyclic graph (DAG) on vertex set V ,

• node v corresponds to variable Xv,

2. a set of probability distributions

• locally: conditional distribution of a gene given its parents.

• such that globally

p(x) =
∏

v∈V

p(xv | xpa(v), θv)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 20
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Questions

1. How do the local probability distributions look like?

−→ Conditional Gaussian networks

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 21
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Questions

1. How do the local probability distributions look like?

−→ Conditional Gaussian networks

2. How is conditional independence defined for directed models?

−→ Global Directed Markov Property

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 21
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Questions

1. How do the local probability distributions look like?

−→ Conditional Gaussian networks

2. How is conditional independence defined for directed models?

−→ Global Directed Markov Property

3. How can we learn a Bayesian network structure from data?

−→ Constraint-based algorithm (and a Bayesian in Part III)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 21
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Questions

1. How do the local probability distributions look like?

−→ Conditional Gaussian networks

2. How is conditional independence defined for directed models?

−→ Global Directed Markov Property

3. How can we learn a Bayesian network structure from data?

−→ Constraint-based algorithm (and a Bayesian in Part III)

4. Are there natural limits in structure learning?

−→ equivalence of network structures

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 21
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Children depend on parents

The DAG defines families.

Relationships are further characterized by local

probability distributions:

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 22
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Children depend on parents

The DAG defines families.

Relationships are further characterized by local

probability distributions:

0   1
X

0  1  2
Z

0   1
Y

p(x) = (0.6 0.4)

p(y) = (0.2 0.8)

p(z|x, y) =

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 22
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Children depend on parents

The DAG defines families.

Relationships are further characterized by local

probability distributions:

0   1
X

0  1  2
Z

0   1
Y

p(x) = (0.6 0.4)

p(y) = (0.2 0.8)

p(z|x, y) =


(0.8 0.1 0.1) if (X, Y ) = (0, 0)
(0.1 0.8 0.1) if (X, Y ) = (0, 1)
(0.1 0.8 0.1) if (X, Y ) = (1, 0)
(0.1 0.1 0.8) if (X, Y ) = (1, 1)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 22
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Local probability distributions I

Discrete node with discrete parents

Xv | xpa(v), θv ∼ Multin(1, θv|xpa(v)
)

Parametrization: θv = {θv|xpa(v)
} is a set of probability vectors –

one for each configuration xpa(v) of parents of v.

Density: [12]

p(xv | xpa(v), θv) =
∏
x′v

θ
1(x′v=xv)

x′v|xpa(v)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 23
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Local probability distributions II

Continous node with continuous parents

Xv | xpa(v), θv ∼ N(µv, σ
2
v),

where µv = β
(0)
v +

∑
i∈pa(v) β

(i)
v xi.

Parametrization: θv = (βv, σ
2
v) contains a vector of regression

coefficients and a variance for node v.

Density:

p(xv | xpa(v), θv) =
1√
2πσ

exp
{
−(xv − µv)2

2σ2
v

}
Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 24
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Local probability distributions III

Continous node with mixed parents

Calling continous variables Y and discrete variables I [16], we can

write

Yv | ipa(v),ypa(v), θv ∼ N(µv|ipa(v)
, σ2

v|ipa(v)
),

where µv|ipa(v)
= β

(0)
ipa(v)

+
∑

i∈pa(v) β
(i)
ipa(v)

xi.

Parametrization: θv = (βv|ipa(v)
, σ2

v|ipa(v)
) contains a vector of

regression coefficients and a variance for node v, which depend

on the state of the discrete parents [1].

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 25
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Conditional Gaussian networks

We can combine the different LPDs in the framework of CG networks:

d d

d c

c

The random vector X has a discrete part I
and a continuous part Y and the distribution

decomposes as

p(x) = p(i,y) = p(i) p(y|i).

These are the general parametric networks used

in statistics [16].

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 26
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Conditional Independence I

X

Y

Z Chain/linear

X |= Z | Y and X |=/ Z | ∅

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 27
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Conditional Independence I

X

Y

Z Chain/linear

X |= Z | Y and X |=/ Z | ∅

p(x, z|y) =
p(x, y, z)

p(y)
=

p(x) p(y|x) p(z|y)
p(y)

= p(x|y) p(z|y)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 27
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Conditional Independence II

X

Y

Z Fork/diverging

X |= Z | Y and X |=/ Z | ∅

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 28
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Conditional Independence II

X

Y

Z Fork/diverging

X |= Z | Y and X |=/ Z | ∅

p(x, z|y) =
p(x, y, z)

p(y)
=

p(x|y) p(y) p(z|y)
p(y)

= p(x|y) p(z|y)

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 28
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Conditional Independence III

X

Y

Z Collider/converging

X |= Z | ∅ and X |=/ Z | Y

Florian Markowetz, Probabilistic Graphical Models for Cellular Pathways, 2005 April 29
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Conditional Independence III

X

Y

Z Collider/converging

X |= Z | ∅ and X |=/ Z | Y

p(x, y, z) = p(x) p(y|x, z) p(z) = p(x) p(z)
p(x, y, z)
p(x, z)
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PC algorithm, part 1

How to find the skeleton of a Bayesian network [26, 21]

Form the complete undirected graph on node set {1, . . . , p}. For each

pair of variables Xi and Xj:

1. Remove the edge i ∼ j iff there exists a subset S ⊆ {1, . . . , p} \
{i, j} such that Xi |= Xj | XS.

2. Start with S = ∅, then continue for increasing |S|.

3. This includes testing marginal, first order and full conditional

independencies.
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PC algorithm, part 2

How to direct the edges [26, 21]

Once we have the skeleton, we can start putting directions on the

edges.

First identify v-structures: Orient X—Y —Z into X −→ Y ←− Z

whenever X |=/ Z | Y .

Second direct as many edges as possible while respecting acyclicity

and the independence constraints from step 1.
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Equivalence of Networks

Two structures and are equivalent if both represent the same set of

independence assertions.

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z
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Part III.

Bayesian structure learning
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Situation

Model: We assume that the dependency structure of a random

vector X follows an unknown DAG D.

The distribution p(x) is Conditional Gaussian and factors according

to D.

Data: We observe independent and identically distributed data d =
{x1, . . . ,xN}. Each observation is a realization of X.

Goal: Estimate D from d.
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Being Bayesian about structure learning

1. Score model
devise a scoring function that evaluates each network with respect

to the training data.

2. Search for best model
search for the optimal network according to this score.

3. Assess model uncertainty
use MCMC or Bootstrap.
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Scoring metric for networks

The posterior distribution of structure and parameters given data is

p(D, θ | d) ∝ p(d | D, θ) · p(θ|D) · p(D).
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Scoring metric for networks

The posterior distribution of structure and parameters given data is

p(D, θ | d) ∝ p(d | D, θ) · p(θ|D) · p(D).

Integrating out nuisance parameters yields

p(D | d) ∝ p(D) ·
∫

p(d | D, θ) p(θ|D) dθ.
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Scoring metric for networks

The posterior distribution of structure and parameters given data is

p(D, θ | d) ∝ p(d | D, θ) · p(θ|D) · p(D).

Integrating out nuisance parameters yields

p(D | d) ∝ p(D) ·
∫

p(d | D, θ) p(θ|D) dθ.

The righthand side will be our score for network fitness. It consists

of a structure prior p(D) and a marginal likelihood p(d | D).
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A local view of marginal likelihood

We zoom in on one discrete family of nodes with a fixed
configuration of parents.

Assuming parameter independence [13] we will solve the integral

p(batch | D) =
∫

p(batch | D, θ) p(θ|D) dθ,

where “batch” means the part of data d corresponding to this one

family.

To solve it analytically, we need priors, which fit to the likelihood.
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Conjugate priors

Discrete part: Multinomial likelihood with Dirichlet prior:

p(batch | D, θ) =
∏
k

θ
nk
k p(θ | D) =

Γ(α+)∏
k

Γ(αk)

∏
k

θ
αk−1
k .

Mixed part: Gaussian likelihood with Normal-inverse-χ2 prior.

Data likelihood is multivariate Normal, vector of regression β

coefficients has Normal prior, variance σ2 has inverse-χ2 prior [1, 18].
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Marginal likelihood of discrete family

p(batch | D) =
∫

p(batch | D, θ) p(θ|D) dθ

=
Γ(α+)∏
k Γ(αk)

∫
Θ

∏
k

θ
nk+αk−1
k dθv

=
Γ(α+)∏
k Γ(αk)

·
∏

k Γ(αk + nk)
Γ(α+ + n+)

with counts nk and Dirichlet parameters αk. For the marginal

likelihood of the complete network, you have to multiply terms like

this for all nodes and all configurations of discrete parents [3, 13].
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Where are we?

We learned in the case of discrete networks, how to compute the

marginal likelihood p(d | D). This is the right part of the score:

p(D | d) ∝ p(D) ·
∫

p(d | D, θ) p(θ|D) dθ.

To complete the score, we need a structure prior p(D).

And after that, we have to come up with a smart strategy to find

high-scoring network structures.
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Search for high scores

Exhaustive search: Infeasible for more than 5 nodes! [22]

If topological order of nodes is known
Start with empty network and iteratively add parents [3].

Hillclimbing (with random restarts)
• Start at randomly chosen network D.

• Score all neighbors (single edge deletions, insertions, inversions).

• Repeat for highest scoring neighbor.

• Runs into next local maximum.

Simulated annealing
Choose suboptimal neighbor with decreasing probability.
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On true models

A quote from Edwards [6]:

“Any method (or statistician) that takes a complex multivariate

dataset and, from it, claims to identify one true model, is both naive

and misleading.”

What we have found is just a simple model consistent with the
data — nothing more, nothing less.
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Assessing uncertainty

Predicting the best network tells us nothing about the robustness of

the solution.

MCMC: Use Markov Chain Monte Carlo to sample from the posterior

distribution [14, 10].

Bootstrap: Computationally efficient approach to address confidence

in network features [9, 11].

Biased-corrected bootstrap: Graphical models learned from

bootstrap samples are biased towards too complex models. Steck

and Jaakkola [27] suggest a bootstrap procedure corrected for this

bias.
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A caveat [8]

If the expression of gene A is regulated by proteins B and C, then A’s

expression level is a function of the joint activity levels of B and C.

We treat the expression of A as a stochastic function of its regulators.
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A caveat [8]

If the expression of gene A is regulated by proteins B and C, then A’s

expression level is a function of the joint activity levels of B and C.

We treat the expression of A as a stochastic function of its regulators.

Problem 1: In most current biological data sets, however, we do not

have access to measurements of protein activity levels.
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A caveat [8]

If the expression of gene A is regulated by proteins B and C, then A’s

expression level is a function of the joint activity levels of B and C.

We treat the expression of A as a stochastic function of its regulators.

Problem 1: In most current biological data sets, however, we do not

have access to measurements of protein activity levels.

Resort: Expression levels of genes as a proxy for the activity level of

the proteins they encode.
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A caveat [8]

If the expression of gene A is regulated by proteins B and C, then A’s

expression level is a function of the joint activity levels of B and C.

We treat the expression of A as a stochastic function of its regulators.

Problem 1: In most current biological data sets, however, we do not

have access to measurements of protein activity levels.

Resort: Expression levels of genes as a proxy for the activity level of

the proteins they encode.

Problem 2: There are numerous examples where an activation or

silencing of a regulator is carried out by posttranscriptional protein

modifications.
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Books on Graphical models

1. Lauritzen: Graphical Models [16]

2. Edwards: Introduction to Graphical Modelling [6]

3. Pearl: Probabilistic Reasoning in Intelligent Systems [20]

4. Cowell et al.: Probabilistic Networks and Expert Systems [4]

5. Jordan: Learning in Graphical Models [15]
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Software on Graphical models

1. BNT [19] http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html

2. MGraph [29] http://folk.uio.no/junbaiw/mgraph/mgraph.html

3. PNL https://sourceforge.net/projects/openpnl/

4. GeneTS [23] http://www.stat.uni-muenchen.de/∼strimmer/genets/

5. DEAL [2] http://www.math.aau.dk/∼dethlef/novo/deal/

6. MIM [6] http://www.hypergraph.dk/

7. TETRAD [26] http://www.phil.cmu.edu/projects/tetrad/

Much more on http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnsoft.html.
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Summary

1. Increasing order of resolution:

Clustering, Graphical Gaussian models, Bayesian networks;

2. Central concept: Conditional independence;

3. Learning structure:

Constraint-based approach and Bayesian scoring.
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Summary

1. Increasing order of resolution:

Clustering, Graphical Gaussian models, Bayesian networks;

2. Central concept: Conditional independence;

3. Learning structure:

Constraint-based approach and Bayesian scoring.

Thank you! Questions?
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