IPM Combinatorics II: Design Theory, Graph Theory, and Computational Methods April 22-27, 2006, IPM, Tehran

The Frankl-Wilson Inequalities and P-ary t-designs

R. M. Wilson California Institute of Technology California, USA

Let $L \subseteq \{0, 1, \ldots, k-1\}$. A family \mathcal{F} of k-subsets of a v-set X is said to be L-intersecting when $|A \cap B| \in L$ for all distinct $A, B \in \mathcal{F}$. For $S \subseteq X$, we use $\lambda(S)$ to denote the number of members of \mathcal{F} that contain S, counting multiplicities if \mathcal{F} is a multiset. We define a p-ary t-design with parameters (v, k, λ_0) to consist of a v-set X and a family \mathcal{F} of k-subsets of X so that $\lambda(T) \equiv \lambda_0 \pmod{p}$ for every t-subset S of X. We prove

Theorem. Let p be a prime and suppose f(x) is a rational polynomial of degree $d, d \leq k$, so that $f(\ell)$ is an integer $\equiv 0 \pmod{p}$ for $\ell \in L$, but f(k) is an integer $\not\equiv 0 \pmod{p}$. Then for any L-intersecting family \mathcal{F} of k-subsets of a v-set,

$$|\mathcal{F}| \le \binom{v}{d}.$$

If equality holds, then \mathcal{F} is the set of blocks of a p-ary t-design for $t = d, d + 1, \ldots, 2d$.

The first part of the theorem is from a 1984 paper of P. Frankl and the author, and it implies that $|\mathcal{F}| \leq {v \choose |L|}$. The second part motivates us to investigate *p*-ary *t*-designs.

It should be noted that while an (ordinary) t-design is also an s-design for s < t, a p-ary t-design is not necessarily also a p-ary s-design for s < t. Given v, k, and p, we characterize the sets of integers $J \subseteq \{1, 2, \ldots, k-1\}$ so that there exist families \mathcal{F} which are p-ary s-designs for $s \in J$ and not p-ary s-designs for $s \in \{1, 2, \ldots, k-1\} \setminus J$. We also consider Fisher-type inequalities on the number of blocks of p-ary t-designs.

Our primary tool is the algebra of higher inclusion matrices.