Modular Ranks and Smith Normal Forms of Some Incidence Matrices

Q. Xiang

University of Delaware Newark, DE, USA

In this talk, we will survey some recent results on p-ranks and Smith normal forms of some incidence matrices from finite geometry.

Let V be an (n+1)-dimensional vector space over GF(q), where $q=p^t$, p is a prime. For $1 < r \le n$, let $A_{1,r}^n(q)$ be the (0,1)-incidence matrix with rows and columns respectively indexed by the r-and 1-dimensional subspaces of V, and with (X, Y)-entry equal to one if and only if the 1-dimensional subspace Y is contained in the r-dimensional subspace X. We will discuss recent work on the complete determination of the Smith normal form of $A_{1,r}^n(q)$.

Furthermore assume that $n+1=2m\geq 4$ and equip V with a nonsingular alternating bilinear form $\langle -,-\rangle$. Let \mathcal{I}_r denote the set of totally isotropic r-dimensional subspaces of V with respect to $\langle -,-\rangle$, where $1\leq r\leq m$. The symplectic polar space $\operatorname{Sp}(2m,q)$ is the geometry with flats \mathcal{I}_r , $1\leq r\leq m$. We will discuss recent results on the p-ranks of the incidence matrices between points and flats of $\operatorname{Sp}(2m,q)$.

The results discussed here are mainly from the joint work of David B. Chandler, Peter Sin and myself.