IPM Combinatorics II: Design Theory, Graph Theory, and Computational Methods April 22-27, 2006, IPM, Tehran

Energy of Graphs

S. Zare Firoozabadi Sharif University of Technology Tehran, Iran

The energy of a graph is defined as the sum of the absolute values of all eigenvalues of a graph. Let G be a graph and the rank of its adjacency matrix denoted by rank(G). In this paper we characterize all graphs whose $E(G) = \operatorname{rank}(G)$. Let G be a graph of order n. We prove that $E(G) \ge \operatorname{rank}(G)$ and the equality holds if and only if $G = \frac{r}{2}K_2 \cup (n-r)K_1$, for some positive integer r. For every connected bipartite graph G of rank r it is shown that $E(G) \ge \sqrt{(r+1)^2 - 5}$. A graph G of order n is called hyperenergetic if E(G) > 2n - 2, where E(G) is the energy of G. In this paper we prove that the Kneser graph $K_{n:r}$ is hyperenergetic for any natural numbers n and $r \ge 2$ with $n \ge 2r + 1$. Also we prove that for $r \ge 2$, the complement of Kneser graph, $E(\overline{K_{n:r}})$, is hyperenergetic.