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Discrete Spectral Geometry

A viewpoint based on mappings

Basic Objects

I H is a geometric objects, we are going to analyze.



Discrete Spectral Geometry

A viewpoint based on mappings

Basic Objects

I There are usually some generic
(i.e. well-known, typical, close at hand, important, ...)
types of these objects.
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A viewpoint based on mappings

Basic Objects (continuous case)

I These are models and objects of Euclidean and non-Euclidean
geometry.
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A viewpoint based on mappings

Basic Objects (continuous case)

I Two important generic objects are the sphere and the upper
half plane.
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A viewpoint based on mappings

Basic Objects (discrete case)

I Some important generic objects in this case are complete
graphs, infinite k-regular tree and fractal-meshes in Rn.
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A viewpoint based on mappings

Basic Objects (discrete case)

I These are models and objects in network analysis and design,
discrete state-spaces of algorithms and discrete geometry (e.g.
in geometric group theory).
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A viewpoint based on mappings

Comparison method

I The basic idea here is to try to understand (or classify if we are
lucky!) an object by comparing it with the generic ones.
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A viewpoint based on mappings

Comparison method

I The space we consider is the space of natural
(structure preserving) maps as σ ∈ Hom(G,H).
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A viewpoint based on mappings

Comparison method

I But it is not usually easy to extract enough information from
the space of natural maps !
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A viewpoint based on mappings

Comparison method

I Therefore we consider invariant or isotone parameters (as ζH )
and prove no-map theorems.
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A viewpoint based on mappings

Comparison method

I A typical no-map theorem (in this sense) is:

∃ σ ∈ Hom∗[G,H] ⇒ Condition(ζG , ζH );

where Condition(ζG , ζH ) is a condition or relation on
ζG and ζH (e.g. ζG = ζH or ζG ≤ ζH ).
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A viewpoint based on mappings

Spectral Geometry (main setup)

I Here usually ζG is related to the spectrum of a nice linear
operator that is related to the geometry of G through the
behaviour of a diffusion process on G.
(e.g. Laplacian and the heat equation!)
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A viewpoint based on mappings

Spectral Geometry (main setup)

I Hence we will talk about spectral parameters as ζG and the
corresponding no-map theorems coming from comparison of
diffusion processes linked by a natural map.
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A viewpoint based on mappings

A general setup

I It was observed by J. Milnor(1968) (continued by Gromov
et.al.) that there is a close relationship between the covering
space theory of H and the fundamental group of H.
(e.g. if H is a k-regular graph then the universal cover is the
infinite k-regular tree.)
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A viewpoint based on mappings

A general setup

I It seems that the spectral radius of the universal cover has a
very close relationship to the spectral gap of the symmetric
spaces constructed over it and some versions of Riemann
Hypothesis for the corresponding zeta (or L) functions seems
to be true.
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A viewpoint based on mappings

A continuous example (Selberg’s Conjecture)

I Let H+
2

be the the upper half plane and

Γn
def= {

(
a b
c d

)
∈ PSL(2,Z) |

(
a b
c d

)
≡ ±

(
1 0
0 1

)
(mod n)}.

I Then Γn \H+
2

is a finite volume Riemann surface. Selberg
used Weil’s theorem on the correctness of Riemann Hypothesis
for curves over finite fields and proved λ1(Γn \H+

2
) ≥ 3

16 .

I He also conjectured that λ1(Γn \H+
2

) ≥ 1
4 = λ0(H

+
2

).
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A viewpoint based on mappings

A discrete example (Ramanujan graphs)

I Let K be the (L2)-Markov kernel of the natural random walk
on the k-regular tree. Then the spectral radius of K is equal
to 2

√
k − 1.

I (Alon-Boppana 1986) Let G
n,k

be a family of k-regular
connected graphs (|V (G

n,k
|) = n). Then,

lim sup
n−→∞

λ1(Gn,k
) ≤ 1− 2

√
k − 1
k

.

I Graphs satisfying the extremal case are called Ramanujan
graphs and satisfy the Riemann Hypothesis for the Ihara
zeta-function.
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A viewpoint based on mappings

Other continuous-discrete connections

I Discrete approximation of Markov processes (Started by
Varopoulos).

I Manifolds from graph constructions. (e.g. Riemann surfaces
through 3-regular graphs (Mangoubi’s thesis))

I Graph on surface embeddings (Robertson-Seymour
well-ordering theorem).

I Discretization of manifolds (This workshop).

I Amalgam constructions (Combinatorial group theory,
3TQFT).

I Geometric group theory and its consequences in spectral
geometry (Amenable groups, groups of automata, ...).

I Honeycombs and tensor products.

I ...
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A general non-symmetric discrete setup

The tangent space

I The tangent space at vertex v is the set of out-going vectors
from v!
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A general non-symmetric discrete setup

Weighted energy spaces

The measure

I Discrete case: Hereafter, we assume that

∀ u ∈ V (G) wu
def=
∑
u→v

wuv .

I Continuous case: Hereafter, we assume that w is a Riemannian
measure on H.
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A general non-symmetric discrete setup

Weighted energy spaces

Chain maps

I Discrete case: Given a graph H = (V (H), E(H)),

I C0(H) def= {f | f : V (H) −→ R with compact support}.

I C1(H) def= {f | f : E(H) −→ R with compact support}.
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A general non-symmetric discrete setup

Weighted energy spaces

The Gradient

I Discrete symmetric case: Given a graph H = (V (H), E(H)),
I ∂∗ = ∇w : C0(H) −→ C1(H),

I ∇wf(e) def= (f(e+)− f(e−))we .
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A general non-symmetric discrete setup

Weighted energy spaces

The Divergence

I Discrete symmetric case: Given a graph H = (V (H), E(H)),
I ∂ = divw : C1(H) −→ C0(H),

I divwf(u) def= 1
wu

(
∑

u=e+

f(e)−
∑

u=e−

f(e)).
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A general non-symmetric discrete setup

Weighted energy spaces

The Laplace operator (Symmetric case)

I Discrete symmetric case: Given a graph H = (V (H), E(H)),
I ∆ : C0(H) −→ C0(H),

I ∆w

def= divw∇w = Id−K,

I K(u, v) def=

{
p(u, v) def= wuv

wu
u↔ v

0 u 6↔ v,
, K is Markov!!!
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A general non-symmetric discrete setup

Weighted energy spaces

Symmetric case (summary)

Discrete Continuous

∆w = divw∇w ∆w = w−1div(w∇)

Ew(f) =< ∆f, f >w= ||∇f ||2
w

Ew(f) =
∫
f(∆f)dw =

∫
|∇f |2dw

I Conservation of energy −−−− > Symmetry ?!

I It is not easy to generalize this approach to the non-symmetric
(e.g. directed, non-commutative, ...) case !!
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A general non-symmetric discrete setup

Weighted energy spaces

Markov kernels (Discrete case)

I Let K(u, v) be an ergodic Markov kernel on C0(H) with a
nowherezero stationary distribution π, i.e. πK = π
(e.g. natural random walk on a connected simple graph).
Note that in this case we have,

∀ u ∈ V (H)
∑

v∈V (H)

K(u, v) = 1 and
∑

u∈V (H)

π(u) = 1.

I We consider the following inner-product on C0(H),

< f, g >π

def=
∑

u∈V (H)

f(u)g(u)π(u).
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A general non-symmetric discrete setup

Weighted energy spaces

Generalized discrete energy spaces I

Concept Data

The Laplace Operator ∆ = Id−K

Dirichlet (Energy) Form E(f, g) =< ∆f, g >π

Continuous Heat semigroup Pt = e−t∆

Discrete Heat semigroup Kn = (Id−∆)n
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A general non-symmetric discrete setup

Weighted energy spaces

Generalized discrete energy spaces II

I Note that
E(f, f) =< (Id−K)f, f >π=< (Id− 1

2(K +K∗))f, f >π .
Hence, one can define the generalized Laplace operator as

∆K

def= Id− 1
2(K +K∗), which is not only self-adjoint, but

also,

E(f, f) =
1
2

∑
u,v

|f(u)− f(v)|2K(u, v)π(u).

This shows that we can interpret K(u, v)π(u) as the
conductance if f is assumed to be a potential.

I Also, we have

∂

∂t
||Ptf ||2 = −2E(Ptf, Ptf).
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A general non-symmetric discrete setup

Weighted energy spaces

Generalized discrete energy spaces (Summary)

Symmetric Nonsymmetric

K = K∗ K = 1
2(K +K∗)

∇f(uv) = |f(u)− f(v)|
→
∇ f(uv) = (f(u)− f(v))+

φ(u, v) = 1
2(φ(u, v) + φ(v, u)) φ(u, v) = K(u, v)π(u)

∆ = Id−K
→
∆= Id−K
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A general non-symmetric discrete setup

Weighted energy spaces

Magic formula (Summary) !

I φ is a nowherezero flow i.e.∑
v

φ(u, v) =
∑

v

φ(v, u).

Compare to the case of for a Riemannian manifold i.e.

∂(Q) = V ol(Boundary(Q)).

I

||
→
∇ f ||

1,φ
= ||∇f ||

1,φ
.

I

||∇f ||2
2,φ

=< ∆f, f >π=<
→
∆ f, f >π .
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A general non-symmetric discrete setup

Comparison and variational formulations

Min-Max principle (finite case)
Let

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1 ,

be the eigenvalues of ∆K . Then, for any 0 ≤ k < n,

λ
k

= min
W∈W

k+1

max
06=f∈W

{
E(f, f)
‖f‖2

π

}
= max

W∈W⊥
k

min
0 6=f∈W

{
E(f, f)
‖f‖2

π

}
,

in which

W
k

def= {W ≤ L2(πG) | dim(W ) ≥ k},

W⊥
k

def= {W ≤ L2(π) | dim(W⊥) ≤ k}.

I This variational description of λ
k

is NOT suitable for
perturbation analysis!
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A general non-symmetric discrete setup

Comparison and variational formulations

Spectral decomposition theorem (finite case)

Let
0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1 ,

be the eigenvalues of ∆K , and also, let {ψi} be a corresponding
orthonormal basis consisting of eigenvectors of ∆K . Then, by
Spectral Decomposition Theorem for self-adjoint operators we
have,

(
1
2
(K +K∗))m(u, v) =

n−1∑
i=0

(1− λi)
mψi(u)ψi(v)π(v).

I How can we use eigenfunctions to get more information?
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A general non-symmetric discrete setup

Summary

Summing up

I Define a well-defined and nice self-adjoint operator that
defines a diffusion process on the base-space
(e.g. ∆w or ∆K ).

I Obtain information (e.g. estimates) about the eigenvalues and
the eigenfunctions of this operator (or functions of these).

I Use a variational principle along with estimates of the
Dirichlet (energy) form to compare these quantities and
obtain no-map theorems.
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A general non-symmetric discrete setup

Summary

Summing up

I Define a well-defined and nice self-adjoint operator that
defines a diffusion process on the base-space
(e.g. ∆w or ∆K ).

I Obtain information (e.g. estimates) about the eigenvalues and
the eigenfunctions of this operator (or functions of these).

I Use a variational principle along with estimates of the
Dirichlet (energy) form to compare these quantities and
obtain no-map theorems.

This approach shows that estimating the Dirichlet (energy) form is
a basic problem!!
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A general non-symmetric discrete setup

Summary

Comments

I Differences between the discrete and the continuous cases.
eigenvalues can be computed in polynomial time while
min-cut is NP-complete.

I The space of eigenfunctions is richer and more complex (e.g.
nodal domains and star-partitions in this talk).

I There is a direct relationship between the continuous and
discrete heat-kernels in the symmetric (reversible) case, but
this is not necessarily true in the nonsymmetric (directed)
case.
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A general non-symmetric discrete setup

Summary

Comments
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min-cut is NP-complete.

I The space of eigenfunctions is richer and more complex (e.g.
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A couple of comparison theorems

Graph homomorphisms

A graph homomorphism

I A graph homomorphism σ from a graph G to a graph H is a
map σ : V (G) −→ V (H) such that uv ∈ E(G) implies
σ(u)σ(v) ∈ E(H).
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A couple of comparison theorems

Graph homomorphisms

A graph homomorphism

I A graph homomorphism σ from a graph G to a graph H is a
map σ : V (G) −→ V (H) such that uv ∈ E(G) implies
σ(u)σ(v) ∈ E(H).
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A couple of comparison theorems

Graph homomorphisms

A question

I Does there exist a homomorphism from the Petersen graph to
the triangle K3?
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A couple of comparison theorems

Graph homomorphisms

Graph colouring

I Homomorphisms to Kn is equivalent to colouring the vertices
of the graph by n colours such that the terminal ends of each
edge have different colours.
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Graph homomorphisms

Graph colouring

I Homomorphisms to Kn is equivalent to colouring the vertices
of the graph by n colours such that the terminal ends of each
edge have different colours.
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A couple of comparison theorems

Graph homomorphisms

Another question!

I Does there exist a homomorphism from the Petersen graph to
the 5-cycle C5?
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Another question!

I Does there exist a homomorphism from the Petersen graph to
the 5-cycle C5?
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A couple of comparison theorems

Graph homomorphisms

Graph homomorphisms and combinatorics

I Graph homomorphisms are natural maps in the category of
graphs.

I Many different concepts in combinatorics are related to the
homomorphism problem, e.g.

I The ordinary colouring problem.
I The circular colouring problem.
I The fractional colouring problem.
I The graph partitioning problem, specially, existence results in

design theory.
I The Hamiltonicity problem.
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A couple of comparison theorems

Graph homomorphisms

Algorithmic considerations

I The following problem is NP-complete
(P. Hell & J. Nesetril 1990).

Problem: HCOL.
Constant: A non-bipartite simple graph H.

Given: A graph G.
Question: Does there exist a homomorphism σ : G −→ H?

I There are close connections to P 6= NP problem !

I Eigenvalues are polynomially computable for the case of finite
graphs !

I The case of directed graphs is completely different!
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A couple of comparison theorems

A comparison theorem

Nodal domains

I Given a graph G with the vertex set V (G), let ψ be an
eigenfunction of ∆. Then a strong positive (resp. negative)
sign graph P of ψ, is a maximal connected subgraph of G, on
vertices vi ∈ V (G) such that ψ(vi) > 0 (resp. ψ(vi) < 0).
Also, we define κ(ψ) to be the whole number of both positive
and negative strong sign graphs of ψ.

I Estimating κ(ψ) is an important problem in Geometry,
Computer Science and Analysis of Algorithms.

I Note that in the discrete case an eigenfunction has no
continuity property and the problem is much harder than
when we are dealing with Riemannian manifolds!!
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A couple of comparison theorems

A comparison theorem

Hilbert–Courant theorem (a generalization)

I (A. Daneshgar & H. Hajiabolhassan 2003)

For any pair of graphs G and H with |V (G)| = n and
|V (H)| = m, and for any 1 ≤ k ≤ m, If σ ∈ Homv(G,H)
and ψ

k
is an eigenfunction for the eigenvalue λ

H

k
, then

max(λ
G

k
, λ

G

κ(ψ
k

)
) ≤ Mσ

Sσ
λ
H

k
.

I Considering the identity automorphism will give rise to the
Hilbert–Courant theorem in the discrete case (P. Stadler
2000).

I The theorem can be generalized to other kernels (possibly
non-positive-definite) with applications in combinatorics.
(e.g. generalize Fisher’s inequality for G-designs).
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and ψ

k
is an eigenfunction for the eigenvalue λ

H

k
, then

max(λ
G

k
, λ

G

κ(ψ
k

)
) ≤ Mσ

Sσ
λ
H

k
.

I Considering the identity automorphism will give rise to the
Hilbert–Courant theorem in the discrete case (P. Stadler
2000).

I The theorem can be generalized to other kernels (possibly
non-positive-definite) with applications in combinatorics.
(e.g. generalize Fisher’s inequality for G-designs).
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A couple of comparison theorems

A comparison theorem

Isolated and separated eigenfunctions

I An eigenfunction f of a matrix A is a separated eigenfunction
if for any edge uv, we have f(u)f(v) ≥ 0. Also, we define an
eigenfunction f to be an isolated eigenfunction if for any edge
uv, we have f(u)f(v) ≤ 0.

I Note that the eigenvalue corresponding to a separated (resp.
isolated) eigenfunction is always non-negative (resp.
non-positive). Also, it is an easy observation that the
subgraph induced on the non-zero vertices of an isolated
eigenfunction is always a bipartite graph.



Discrete Spectral Geometry

A couple of comparison theorems

A comparison theorem

Isolated and separated eigenfunctions

I An eigenfunction f of a matrix A is a separated eigenfunction
if for any edge uv, we have f(u)f(v) ≥ 0. Also, we define an
eigenfunction f to be an isolated eigenfunction if for any edge
uv, we have f(u)f(v) ≤ 0.

I Note that the eigenvalue corresponding to a separated (resp.
isolated) eigenfunction is always non-negative (resp.
non-positive). Also, it is an easy observation that the
subgraph induced on the non-zero vertices of an isolated
eigenfunction is always a bipartite graph.



Discrete Spectral Geometry

A couple of comparison theorems

A comparison theorem

A toy example!



Discrete Spectral Geometry

A couple of comparison theorems

A comparison theorem

A result for the kernel

I (A. Daneshgar & H. Hajiabolhassan 2003)

Let G and H be two graphs with |V (G)| = n and
|V (H)| = m, and α

k
’s be the eigenvalues of the adjacency

matrix in non-increasing order. Then for any separated

eigenfunction f
k

of the eigenvalue α
H

k
and for any isolated

eigenfunction f
l
of the eigenvalue α

H

l
,

a ) if σ ∈ Homv(G,H) we have

α
G

n−κ(f
k

)+1
≤ Mσ

S
σ

α
H

k
& α

G

κ(f
l
)
≥ Mσ

S
σ

α
H

l
.

b ) if σ ∈ Home(G,H) we have α
G

κ(f
k

)
≥ Mσ

Sσ α
H

k
.
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A couple of comparison theorems

A comparison theorem

A comparison theorem
(A. Daneshgar & H. Hajiabolhassan 2002)

I Let G and H be two graphs with |V (G)| = n and
|V (H)| = m.

a ) If σ ∈ Homv(G,H), then for all 1 ≤ k ≤ m,

λ
G

k
≤ Mσ

Sσ

λ
H

k
.

b ) If σ ∈ Home(G,H), then for all 1 ≤ k ≤ m,

λ
G

n−m+k
≥ Mσ

Sσ λ
H

k
.

c ) If σ ∈ Hom(G,H) and H is both vertex and edge transitive
then,

λ
G

n
≥ 2|E(G)|

n∆
H

λ
H

m
.



Discrete Spectral Geometry

The isoperimetric spectrum

Spectral gap and connectivity

I Let K be a Markov kernel. Then the smallest non-zero
eigenvalue λ of ∆K = Id− 1

2(K +K∗) is called the spectral
gap, and by the Min-Max principle we have,

λ = min
0 6=f

{
E(f, f)
‖f‖2

π

}
.

I The spectral gap controls the rate of convergence of the
diffusion and hence is a measure of connectedness.

I What happens if we consider the L1 version of the quotient

E(f, f)
‖f‖2

π

=
∫
|∇f |2dπ∫
|f |2dπ

?
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The isoperimetric spectrum

Cheeger’s constant

I The L1 version of the spectral gap, called the Cheeger’s
constant h, reduces to the concept of minimum weighted cut
in the discrete case as,

Discrete Continuous

min
|A|π≤1/2

{
|∂A|π
|A|π

}
min

V oln (A)≤1/2

{
V oln−1(∂A)
V oln(A)

}

I Cheeger’s constant is also a measure of connectivity that
guarantees fast diffusion!!

I Examples: h(H+
2

) = 1. also, h = 0 is related to amenability!
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Discrete Spectral Geometry

The isoperimetric spectrum

The nth generalized isoperimetric number

I We need a variational formulation (related to the eigenvalues)
that satisfies,

I Relation to the first kth eigenvalues.
I Nice behaviour in perturbation analysis.
I Have a nice functional description.

I A straight-forward generalization:

ι̃n(G) def= min
{Qi}

n
1
∈Pn (G)

1
n

(
n∑

i=1

→
∂ (Qi)
π(Qi)

)
,

where Pn(G) is the class of all n-partitions of G.



Discrete Spectral Geometry

The isoperimetric spectrum

The nth generalized isoperimetric number

I We need a variational formulation (related to the eigenvalues)
that satisfies,

I Relation to the first kth eigenvalues.
I Nice behaviour in perturbation analysis.
I Have a nice functional description.

I A straight-forward generalization:

ι̃n(G) def= min
{Qi}

n
1
∈Pn (G)

1
n

(
n∑

i=1

→
∂ (Qi)
π(Qi)

)
,

where Pn(G) is the class of all n-partitions of G.



Discrete Spectral Geometry

The isoperimetric spectrum

The nth generalized isoperimetric number

I We need a variational formulation (related to the eigenvalues)
that satisfies,

I Relation to the first kth eigenvalues.
I Nice behaviour in perturbation analysis.
I Have a nice functional description.

I A straight-forward generalization:

ι̃n(G) def= min
{Qi}

n
1
∈Pn (G)

1
n

(
n∑

i=1

→
∂ (Qi)
π(Qi)

)
,

where Pn(G) is the class of all n-partitions of G.



Discrete Spectral Geometry

The isoperimetric spectrum

Geometric graphs I

I It seems that you can NOT go too far with this definition!

I The correct definition is

ιn(G) def= min
{Qi}

n
1
∈Dn (G)

1
n

(
n∑

i=1

→
∂ (Qi)
π(Qi)

)
,

where Dn(G) is the class of all n-disjoint subsets of G.

I You can generalize and prove a nice functional equation.

I You can use Ky Fan’s and Wielandt’s variational principles
(e.g. λn ≤ ιn(G)).

I You can use convex analysis.
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The isoperimetric spectrum

Geometric graphs II

I A graph G is called n-geometric if ιn(G) = ι̃n(G).

Note that all graphs are 2-geometric.

I For any graph we can talk about the isoperimetric spectrum,

0 = ι1(G) < ι2(G) < . . . < ι|V (G)|(G).

I Program: Characterize n-geometric objects.

I Program: What are the minimizers and maximizers?
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Discrete Spectral Geometry

ε-Uniformizers

A 0-uniformizer (I)

I Let G and H be two connected digraphs such that
|V (G)| = n, |V (H)| = m and also assume that the group of
automorphisms of H, Aut(H), acts transitively on both
V (H) and E(H). Let σ ∈ Hom(G,H).

I Let Aut(H) = {ζi | i = 1, . . . , t} and define, G̃
def=

t⋃
i=1

Gi ,

where each connected component of G̃, such as Gi , is an
isomorphic copy of G. Also, define the homomorphism σ̃ such
that its restriction to Gi is ζi ◦ σ. It is easy to see that

σ̃ ∈ Home(G,H), Mσ = |E(G)|
|E(H)| × t and Sσ = |V (G)|

|V (H)| × t.
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ε-Uniformizers

A 0-uniformizer (II)

I Let G and H be two connected digraphs with
n = |V (G)| ≥ |V (H)| = m, where H = Cay(V (H), X) is a
Cayley graph in which X is closed under conjugation. Also,
let σ ∈ Home(G,H).

I Define a map σ̃ : V (G�H) −→ V (H) as follows,

σ̃((vi , xj )) = σ(vi)xj i = 1, . . . , n and j = 1, . . . ,m.

I One can show that σ̃ is a homomorphism,

S σ̃ = Sσ̃ = n and Mσ̃ ≥ n+mMσ .
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Discrete Spectral Geometry

ε-Uniformizers

A 0-uniformizer (III)

I Let G be the category of graphs and U : G −→ G a functor.

I Then (intuitively) U is called an ε-uniformizer for
σ : G −→ H if the deviation in the size of the inverse-image
maps of U(σ) is ε.

I How can we find uniformizers?

I It seems that we need, surjectivity, symmetry on the range
and nice amalgam constructions.
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ε-Uniformizers

Cylinderical construction (Example)

I Hom(G ∗H,K) ' Hom(G,KH).



Discrete Spectral Geometry

Symmetric spaces and representation theory

The general setup (I)

I Let H be a nice subgroup of a nice group G, and let
χ : H −→ U(H) be a representation of H. Let
ρ : G −→ U(K) be the induced representation on G by χ and
let σ : L1(G) −→ L(K) be the algebra representation
associated with ρ. Then for every f ∈ L1(G) the following
kernel exists (at least in a weak sense)

K
f
(x, y) def=

∫
H
f(xhy−1)χ(h)dh,

and moreover we have

σ(f)θ(x) =
∫

G/H
K
f
(x, y)θ(y)dη.
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Symmetric spaces and representation theory

The general setup (II)

I An important special case is when H = {0} and then ρ will
be the left regular representation of G and moreover σ(f) is
exactly convolution by f , i.e.

σ(f)θ(x) = (f ∗ θ)(x) =
∫

G
f(xy−1)θ(y)dy.

I If fS is the characteristic function of a generating set S then
σ(fS ) is exactly the adjacency matrix of the corresponding
Cayley graph.

I The same construction works in general for coset graphs
which gives rise to the most interesting symmetric examples!
The adjacency operator is usually called the Hecke operator.
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Symmetric spaces and representation theory

The general setup (III)

I The algebra of bi-H-invariant functions on G is called the
Hecke algebra.
Also, a left-H-invariant function ω such that f ∗ ω = λ

f
ω

holds for any f in the Hecke algebra is called a spherical
function.

I Magic relationship!
If fS is in the Hecke algebra then any spherical function is
also an eigenfunction of the Hecke operator and consequently
an eigenfunction of the Laplacian.
On the other hand, if the Hecke algebra is commutative then
there is a nice correspondence between the representations of
this algebra and the set of spherical functions!

I What about more general cases?!
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Discrete Spectral Geometry

Symmetric spaces and representation theory

Coset graphs and character sums

I (Babai, Diaconis, M. Shahshahani)
When S is a union of conjugacy classes (i.e. the case of
quasi-Abelian Cayley graphs) then the eigenvalues can be
computed from the character sums.
Generalizations of this to the case of general coset-graphs is
being studied.

I Also, a crucial step is to construct ε-uniformizers for general
coset-graphs.
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Discrete Spectral Geometry

Epilogue

Some general comments and questions

I Try to introduce constructions that decode geometric
properties into directed graphs.

I It seems that the case of infinite directed graphs is one of the
most important cases, since they are right between the
symmetry and non-symmetry as well as finite-discrete and
continuous cases!

I Is it not a better strategy to consider the mean of the first k
eigenvalues and characterize the extremal cases. By the way,
can you say anything about this when k = 2?

I Can you use the symmetry of the generic geometric objects to
construct ε-uniformizers in the continuous case?
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It seems that everything is about

estimates of connectedness and density!!!

Thank You!
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