On classification of Hadamard matrices of order 32

B. Tayfeh-Rezaie

Institute for studies in theoretical Physics and Mathematics (IPM)

IPM, September 2007

WHAT IS GOOD MATHEMATICS?

TERENCE TAO:

WHAT IS GOOD MATHEMATICS?

TERENCE TAO:

:

(xxi) Definitive mathematics (e.g. a classification of all objects of a certain type; the final word on a mathematical topic)

Order	#Hadamard matrices
4	1
8	1
12	1
16	5
20	3
24	60
28	487
32	\geq 3, 578, 006

$$\begin{bmatrix} j_a & j_a & j_a & j_a \\ j_b & j_b & j_b & -j_b \\ j_b & j_b & -j_b & j_b \\ j_a & j_a & -j_a & -j_a \\ j_b & -j_b & j_b & j_b \\ j_a & -j_a & j_a & -j_a \\ j_a & -j_a & -j_a & j_a \\ j_b & -j_b & -j_b & -j_b \end{bmatrix}$$

$$\begin{bmatrix} j_{a} & j_{a} & j_{a} & j_{a} \\ j_{b} & j_{b} & j_{b} & -j_{b} \\ j_{b} & j_{b} & -j_{b} & j_{b} \\ j_{a} & j_{a} & -j_{a} & -j_{a} \\ j_{b} & -j_{b} & j_{b} & j_{b} \\ j_{a} & -j_{a} & j_{a} & -j_{a} \\ j_{a} & -j_{a} & -j_{a} & j_{a} \\ j_{b} & -j_{b} & -j_{b} & -j_{b} \end{bmatrix}$$

 $a+b=n/4, \ a \ge b.$

 $a+b=n/4, a \ge b.$

This is of type b, where $0 \le b \le \lfloor n/8 \rfloor$.

A Hadamard matrix is of type b if

it has a set of four columns of type b and no set of four columns of type less than b.

Objective

To classify all Hadamard matrices of order 32 which are of type zero.

$$\left[egin{array}{ccccccc} j_m & j_m & j_m & j_m \ j_m & -j_m & -j_m \ j_m & -j_m & j_m & -j_m \ j_m & -j_m & -j_m & j_m \end{array}
ight]$$

$$m = n/4$$

Classification of combinatorial objects

A classification algorithm in general has two essential parts:

- Generation of objects
- Isomorphic rejection

In each isomorphism class a unique object is considered as the canonical form.

In each isomorphism class a unique object is considered as the canonical form.

Canonical form is defined such that sub-objects constructed during the construction phase are also in canonical form.

In each isomorphism class a unique object is considered as the canonical form.

Canonical form is defined such that sub-objects constructed during the construction phase are also in canonical form.

An efficient procedure is needed to recognize those sub-objects which are not in canonical form.

• The rows and columns of *H* are in decreasing order.

- The rows and columns of *H* are in decreasing order.
- The first four columns of H are of type 0.

- The rows and columns of *H* are in decreasing order.
- The first four columns of H are of type 0.
- The first three rows of *H* are in the following form:

$$\left[egin{array}{ccccc} e_m & e_m & e_m & e_m \ e_m & e_m & -e_m & -e_m \ e_m & -e_m & e_m & -e_m \end{array}
ight],$$

where m = n/4 and e_m denotes the all one row vector of dimension m.