IPM Logic Conference 2007, June 10 - 15, 2007, IPM, Tehran, Iran

A Model Theoretic Characterization of $I\Delta_0 + Exp + B\Sigma_1$.

A. Enayat American University Washington, DC, USA

We establish the following model theoretic characterization of the fragment $I\Delta_0 + Exp + B\Sigma_1$ of Peano arithmetic in terms of *fixed points* of automorphisms of models of bounded arithmetic (the fragment $I\Delta_0$ of Peano arithmetic with induction limited to Δ_0 -formulae).

Theorem A. The following two conditions are equivalent for a countable model \mathfrak{M} of the language of arithmetic:

(a) \mathfrak{M} satisfies $I\Delta_0 + B\Sigma_1 + Exp$.

(b) $\mathfrak{M} = I_{fix}(j)$ for some nontrivial automorphism j of an end extension \mathfrak{N} of \mathfrak{M} that satisfies $I\Delta_0$.

Here $I_{fix}(j)$ is the largest initial segment of the domain of j that is pointwise fixed by j, Exp is the axiom asserting the totality of the exponential function, and $B\Sigma_1$ is the Σ_1 -collection scheme consisting of the universal closure of formulae of the form

 $[\forall x < a \exists y \ \varphi(x, y)] \rightarrow [\exists z \ \forall x < a \ \exists y < z \ \varphi(x, y)],$

where φ is a Δ_0 -formula. Theorem A was inspired by a theorem of Smoryński, but the method of proof of Theorem A is quite different and yields the following strengthening of Smoryński's result:

Theorem B. Suppose \mathfrak{M} is a countable recursively saturated model of PA and I is a proper initial segment of \mathfrak{M} that is closed under exponentiation. There is a group embedding $j \mapsto \hat{j}$ from $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M})$ such that $I = I_{fix}(\hat{j})$ for every nontrivial $j \in Aut(\mathbb{Q})$. Moreover, if j is fixed point free, then the fixed point set of \hat{j} is isomorphic to \mathfrak{M} .

Here Aut(X) is the group of automorphisms of the structure X, and \mathbb{Q} is the ordered set of rationals.