IPM Logic Conference 2007, June 10 - 15, 2007, IPM, Tehran, Iran

Set Theory with a Class of Indiscernibles

A. Enayat

American University Washington, DC, USA

We focus on an extension of Zermelo-Fraenkel set theory, ZFCI, which strongly negates Leibniz's dictum on the identity of indiscernibles by asserting "there are a proper class of indiscernibles". ZFCI is a theory formulated in the language $\{\in, I(x)\}$, where I(x)is a unary predicate to distinguish the indiscernibles. As we shall see, ZFCI goes well beyond ZFC since it proves the existence of *n*-Mahlo cardinals for each concrete natural number *n*. One can precisely describe the first order consequences of ZFCI in the usual language of set theory $\{\in\}$. In order to do so, let Φ be the set of sentences of the following form (for each concrete natural number *n*) :

"there is an *n*-Mahlo cardinal κ such that V_{κ} is a Σ_n elementary submodel of the universe".

Here is the first main result:

Theorem A. For any sentence σ in the usual language of set theory $\{\in\}$, the following two conditions are equivalent:

- (a) $ZFCI \vdash \sigma$;
- (b) $ZFC + \Phi \vdash \sigma$.

One can also *iterate* the idea of adding indiscernibles by introducing countably many new unary predicates $\{I_n : n \in \omega\}$ in order to formulate a theory $ZFCI^{\omega}$ extending ZFCI by adding axioms asserting, for each n, that I_{n+1} is a proper class of indiscernibles for formulae in the language $\{\in, I_1, \dots, I_n\}$. As it turns out, this new system will not produce any new theorems of set theory beyond those of ZFCI, i.e., Theorem A can be improved to the following result:.

Theorem B. For any sentence S in the usual language of set theory $\{\in\}$,

the following five conditions are equivalent:

- (a) $ZFCI^{\omega} \vdash \sigma$;
- (b) $ZFCI \vdash \sigma$;
- (c) $ZFC + \Phi \vdash \sigma$.