IPM Logic Conference 2007, June 10 - 15, 2007, IPM, Tehran, Iran

Double Negation of Intermediate Value Theorem

R. Ramezanian

Sharif University of Technology Tehran, Iran

In the context of intuitionistic analysis, we assume the set \mathcal{F} consisting of all continuous functions ϕ from [0,1] to \mathbb{R} such that $\phi(0) = 0$ and $\phi(1) = 1$, and \mathcal{I}_0 the set of ϕ 's in \mathcal{F} that there exists $x \in [0,1]$ such that $\phi(x) = \frac{1}{2}$. It is well-known that there are weak counterexamples to the intermediate value theorem, and with the help of Brouwer's continuity principle $\mathcal{I}_0 \neq \mathcal{F}$. However, there exists no satisfying answer to $\mathcal{I}_0^{\neg \neg} = \mathcal{F}$. We try to answer to this question by reducing it to some properties about intuitionistic decidable subsets of \mathbb{N} . Using this reduction, it is shown that $\mathcal{F}_{mon} \neq (\mathcal{I}_0)_{mon}^{\neg \neg}$ cannot be derived form some well known intuitionistic axioms, Weak Continuity principle, Kripke Schema, and Fan principle. Also, assuming an equivalent form of Markove's principle, i.e., $\forall x \in \mathbb{R} (x \neq 0 \rightarrow x \neq 0)$, it is derived $\mathcal{F}_{mon} = (\mathcal{I}_0)_{mon}^{\neg \neg}$. It is proved that the converse does not hold, and the assumption $\mathcal{F}_{mon} = (\mathcal{I}_0)_{mon}^{\neg \neg}$ does not imply $\forall x \in \mathbb{R} (x \neq 0 \rightarrow x \neq 0)$. We also introduce the notion of strong Specker double sequence, and prove that existence of a strong Specker double sequence implies existence of $\phi \in \mathcal{F}$ such that $\neg \exists x \in [0,1]\phi(x) = \frac{1}{2}$.