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Rosenberg and Zelinsky [10] studied rings over which every module of finite

length has an injective hull of finite length. As special case Michler and Villamayor

[7] considered rings over which every simple module is injective.

Definition. The ring R is a (right) V-ring if it satisfies the equivalent conditions:

(1)- Every simple right R-module is injective.

(2)- Mod-R has a semisimple cogenerator.

(3)- For every module MR, Rad(M) = 0.(Jacobson radical)

(4) Any right ideal is an intersection of maximal right ideals.

As a consequence of (4):

∀I �r R, I2 = I.

Thus if R is a commutative V-ring, it has to be Von-Neumann regular . In fact

If R is commutative, then R is a V-ring iff R is regular.

But we cannot drop commutativity: The endomorphism ring of an infinite dimen-

sional left vector space is regular but not a right V-ring.

Examples.

Cozzens [1]: There exists a Noetherian V domain with a unique simple module.

This is an Ore extension example.

Osofsky [9]: There exists a Noetherian V domain with infinitely many nonisomor-

phic simple modules.

McConnell and Robson [6]: The first Weyl-algebra A1 over a field of characteristic

zero has infinitely many non isomorphic simple modules, and no simple A1-module
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is injective.

Furthermore in this connection:

Matlis [5]: If R is commutative Noetherian E(MR) is Artinian whenever MR is sim-

ple.

Snider [11]: If G is a nilpotent by finite group, then for the integral group ring

Z[G] = R, E(MR) is Artinian if MR is simple.

All these results motivated Hirano’s study of n-V-rings, and π-V-rings [4]:

Definition. A ring R is called a π-V-ring if

∀ simple MR, lengthR(E(M)) < ∞, and

R is called a k-V-ring if ∀ simple MR, LenR(E(M)) ≤ k.

Thus 1-V-ring ≡ V-ring.

Rosenberg and Zelinsky : If R is left and right Artinian PI-ring, then R is (left

and right) π-V-ring.

In particular a module finite algebra over a commutative Artinian ring is a π-V-

ring.

Notation. π-V is the class of all π-V-rings.

n-V is the class of all n-V-rings.

So

1− V ⊆ 2− V ⊆ ... ⊆ n− V ⊆ ... ⊆ π − V

Hirano characterized n-V-rings and π-V-rings and proved:

1- R ∈π-V iff ∀ MR with LenR(M) < ∞, LenRE(M) < ∞ iff ∀ MR, απ(M) = 0

where απ(M) = ∩N , N ≤ M with LenR(M/N) < ∞.

2- R ∈n-V iff ∀MR, αn(M) = 0 where αn(M) = ∩N , N ≤ M with LenR(M/N) ≤ n.

3- Let S be a finite normalizing extension of R with a set of generators consisting

of k-elements. Then

R ∈ π − V ⇒ S ∈ π − V
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R ∈ n− V ⇒ S ∈ kn− V

4- If R is commutative, then

R ∈ π − V iff all localizations of R at maximal ideals are Artinian.

R ∈ n− V iff for all maximal ideals T of R, Len(RT ) ≤ n as an RT -module.

Question. Given n ∈ N, does there exist a ring R such that

R ∈ n− V but R /∈ (n− 1)V ? I.e, (n− 1)− V & n− V ?

If yes, we say that R has V-dimension n, and write V-dim(R) = n.

If R ∈ π − V and ∀n ∈ N, R /∈ n− V , we write V-dim(R) = ∞.

Note. V-dim(R) is not defined if R /∈ π − V .

We approach the above question through formal triangular matrix rings, and

prove:

Theorem. Given n ∈ N, there exist formal triangular matrix rings T1, T2 and T3

with V-dim(T1) = n, V-dim(T2) = ∞, and T3 /∈ π − V .

Rudiments of Formal Triangular Matrix Rings

Let A and B be rings, BMA a bimodule, and

T =

(
A 0
M B

)
.

The following is recalled from [3].

The category Mod−T is equivalent to a category Ω of triples (X, Y )f where X ∈ModA,

Y ∈ Mod−B and f : Y
⊗

B M −→ X is a map in Mod−A.

Morphisms from (X, Y )f to (U, V )g in Ω are pairs (ϕ1, ϕ2)

ϕ1 : X −→ U is a map in Mod−A, ϕ2 : Y −→ V is a map in Mod−B such that

Y
⊗

M −→ X
↓ ϕ2 ↓ ϕ1

V
⊗

M −→ U
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is commutative. In fact the right T -module corresponding to (X, Y )f is the

additive group X ⊕ Y with the right T−action:

(x, y)

(
a 0
m b

)
= (xa + f(y ⊗m), yb)

If e1 =

(
1 0
0 0

)
and e2 =

(
0 0
0 1

)
then e2

1 = e1, e2
2 = e2, e1e2 = e2e1 = 0 and

e1 + e2 = 1. So A ∼= e1Te1 and B ∼= e2Te2.

For any ZT we have ZT = Ze1 ⊕ Ze2, (Ze1)e1Te1 and (Ze2)e2Te2 are modules.

Put X = Ze1, Y = Ze2, so we get XA and YB.

Define: f : Y
⊗

B M −→ X by f(y, m) = y

(
0 0
m 0

)
= y

(
0 0
m 0

)
e1 ∈ X

f is A-linear, and ZT = (X ⊗ Y )T corresponds to (X,Y )f ∈ Ω.

If Z ′ ≤ ZT then Z ′ = Z ′e1 ⊕ Z ′e2 ≡ (X ′ ⊕ Y ′)T with X ′ = Z ′e1, Y ′ = Z ′e2,

X ′ ≤ XA, Y ′ ≤ YB and Z ′ corresponds to (X ′, Y ′)f ′ where

f ′ = fo(j2 ⊗ IdM) : Y ′ ⊗M −→ X ′ and j2 : Y ′ −→ Y is the inclusion map.

Conversely if X ′ ≤ XA, Y ′ ≤ YB, f ′ = fo(j2 ⊗ IdM) satisfy Imf ′ ≤ X ′ then

(X ′, Y ′)f ′ ∈ Ω, and (X ′ ⊕ Y ′)T ≤ (X ⊕ Y )T which in Ω means that

(j1, j2) : (X ′, Y ′)f ′ −→ (X,Y )f is a monomorphism.

Lemma. If ZT is simple then Z corresponds to either (X, 0)0 or (0, Y )0.

Let now (X, Y )f ∈ Ω. Define f̃ : Y −→ HomA(M, X), f̃(y)(m) = f(y ⊗m)

Proposition.(Müller [8]) The injective envelope of Z(X ⊕ Y )T corresponds to

(E(X),HomA(M, E(X)⊕ E(kerf̃))δ where

δ : {HomA(M, E(X))⊕ E(kerf̃)} ⊗B M −→ E(X)

δ((η, µ)⊗m) = η(m), ∀η ∈HomA(M, E(X)), µ ∈ E(kerβ̃), m ∈ M .

Furthermore if ϕ1 : X −→ E(X) is the natural embedding,

ϕ2 : Y −→HomA(M, E(X)) ⊕ E(kerf̃) is given by ϕ2(y) = (ιof̃(y), τ(y)) where

τ : Y −→ E(kerf̃) is an extension of the inclusion kerf̃ ↪→ E(kerf̃),

then (ϕ1, ϕ2) corresponds to an essential monomorphism: Z −→ E(Z).

Conclusion: If Z = (X ⊕ Y )T is simple, then E(Z) corresponds to either

(E(X),HomA(M, E(X))δ or (0, E(Y ))0 where δ :HomA(M, E(M))⊗B M −→ E(X)

with δ(η)⊗m = η(m).
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Theorem.(Haghany [2]) Let Z = (X ⊕ Y )T . Then K-dim(Z) exists if and only if

K-dim(XA) and K-dim(YB) exist, and in this case K-dim(ZT ) =max{K-dim(XA),

K-dim(YB)}. In particular ZT is Artinian if and only if XA and YB are Artinian.

These are valid if we replace Krull-dimension by Noetherian dimension, hence in

particular ZT is Noetherian if and only if XA and YB are Noetherian.

Lemma. Let Z = (X ⊕ Y )T . Then ZT has finite length if and only if XA and YB

are of finite length. If ZT is of finite length, then

LeT (Z) = LeA(X) + LeB(Y )

Proof. (X ⊕ 0)T and XA have isomorphic lattices of submodules. Suppose ZT is

of finite length, As (X ⊕ 0) ≤ ZT , we get LeA(X) < ∞. Now Z
(X⊕0)

corresponds

to (0, Y )0, hence LeB(Y ) =LeT ( Z
(X⊕0)

) < ∞. Since composition length is additive

we have LeT (Z) =LeA(X)+ LeB(Y ). Conversely suppose XA and YB are of finite

length. Then XA and YB are both Artinian and Noetherian, and it follows that ZT

is both Artinian and Noetherian, hence ZT is of finite length.

Theorem. Let T =

(
A 0
M B

)
. Then V-dim(T ) = n if and only if the following

hold.

(1)- B ∈ nV and ∀ simple XA, LeA(E(X))+ LeB(HomA(M, E(X))) ≤ n (*).

(2)- Either V-dim(B) = n or ∃ simple XA for which the equality in (*) holds.

Proof. Suppose Z = (X ⊕ Y )T is simple. Then E(Z) corresponds to (0, E(Y )) or

to (E(X),HomA(M, E(X)))δ. Now by previous Lemma, (1) ⇒ T ∈ n−V;

(2)⇒ T /∈ (n− 1)−V. Consequently (1) and (2) imply V-dim(T ) = n.

Conversely suppose V-dim(T ) = n. Then (1) holds. Since T /∈ (n− 1)−V, either ∃
simple T−module corresponding to (X, 0)0 with XA (necessarily simple) satisfying

LeT (E((X, 0)0) 
 n − 1 or ∃ simple T−module of the form (0, Y )0 with YB simple

satisfying LeT (E((0, Y )))) =LeB(E(Y )) 
 n−1, giving B /∈ (n−1)−V, consequently

by (1) V-dim(B) = n. Hence (2) holds.

Corollary. V-dim(A×B) =max{V-dim(A), V-dim(B)}.

Proof. In previous theorem put M = 0.

Corollary. Given n > 2, ∃T1 with V-dim(T1) = n.

Proof. Let F be a field, M = F (n−1) and T1 =

(
F 0
M F

)
. Then V-dim(F ) = 1

and F is the only simple F -module, so LeF [HomF (M, F )] =dim(M) = n− 1. Con-
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sequently LeF (F )+ LeF [HomF (M, F )] = n.

Theorem There exists a formal triangular matrix ring T2 with V-dim(T2) = ∞.

Proof. Let A = A1(k) be the first Weyl algebra over a field of characteristic zero.

Choose a countable infinite set of non-isomorphic simple A-modules X1, X2, · · ·. Let

Zi = X
(i)
i , M =

∑
i>1⊕Zi, and T2 =

(
A 0
M k

)
. If X is an arbitrary simple A-

module, we have:

HomA(M, E(X)) =HomA(
∑

i>1⊕Zi, E(X)) ∼=
∏

i>1HomA(Zi, E(X)).

Suppose X ∼= Xj for some j. Then∏
i>1HomA(Zi, E(X)) ∼=HomA(Zj, E(Xj)) ∼= (HomA(Xj, E(Xj)))

(j).

Since HomA(Xj, E(Xj)) embeds in HomA(Xj, Xj), and the endomorphism rings of

simple A-modules are finite dimensional k-vector spaces, we deduce that

j 6dimkHomA(M, E(X)) < ∞. If on the other hand X � Xj for all 1 ≤ j, we

conclude that HomA(M, E(X)) = 0. It follows that V-dim(T ) = ∞.

We now construct a formal triangular matrix ring T3 for which V-dimension is

not defined.

Example: Let p be a fixed prime number, and set T3 =

(
Z 0

Zp∞ Z

)
.

We observe below that T3 /∈ π−V. In fact simple Z-modules are of the form Z̄q with

Zq∞ as its Z-injective envelope, (q is a prime number). Now triple (Z̄p, 0)0 corresponds

to a simple T3-module whose injective envelope gives (Zp∞ ,HomZ(Zp∞ , Zp∞))δ.

Since the endomorphism ring of Zp∞ is not of finite length as a Z-module we deduce

that T3 /∈ π-V.

FURTHER DEVELOPMENTS

Co-Noetherian ring R is one such that the injective hull of every simple R-module is

Artinian. Of course all π−V rings are co-Noetherian and there are many other exam-

ples including the first Weyl algebra over finitely generated commutative Z-algebras.

In a forthcoming paper, we have defined a dimension function that measures how

distant a ring is from being co-Noetherian . The crucial step towards this is the

following fact: Given a positive integer n there exists a ring R with a simple module

whose injective envelope has Krull dimension n.

One may analogously consider co-Artinian rings using Noetherian dimension.
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