A NEW DIMENSION FUNCTION ON RINGS

A. Haghany
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, IRAN.

Rosenberg and Zelinsky [10] studied rings over which every module of finite length has an injective hull of finite length. As special case Michler and Villamayor [7] considered rings over which every simple module is injective.

Definition. The ring R is a (right) V-ring if it satisfies the equivalent conditions:
(1)- Every simple right R-module is injective.
(2)- $\operatorname{Mod}-R$ has a semisimple cogenerator.
(3)- For every module $M_{R}, \operatorname{Rad}(M)=0$.(Jacobson radical)
(4) Any right ideal is an intersection of maximal right ideals.

As a consequence of (4):

$$
\forall I \unlhd_{r} R, I^{2}=I
$$

Thus if R is a commutative V-ring, it has to be Von-Neumann regular . In fact
If R is commutative, then R is a V-ring iff R is regular.
But we cannot drop commutativity: The endomorphism ring of an infinite dimensional left vector space is regular but not a right V-ring.

Examples.

Cozzens [1]: There exists a Noetherian V domain with a unique simple module. This is an Ore extension example.

Osofsky [9]: There exists a Noetherian V domain with infinitely many nonisomorphic simple modules.

McConnell and Robson [6]: The first Weyl-algebra A_{1} over a field of characteristic zero has infinitely many non isomorphic simple modules, and no simple A_{1}-module
is injective.

Furthermore in this connection:

Matlis [5]: If R is commutative Noetherian $E\left(M_{R}\right)$ is Artinian whenever M_{R} is simple.

Snider [11]: If G is a nilpotent by finite group, then for the integral group ring $\mathbb{Z}[G]=R, E\left(M_{R}\right)$ is Artinian if M_{R} is simple.

All these results motivated Hirano's study of n-V-rings, and π-V-rings [4]:

Definition. A ring R is called a π-V-ring if \forall simple M_{R}, length ${ }_{R}(E(M))<\infty$, and R is called a k-V-ring if \forall simple M_{R}, $\operatorname{Len}_{R}(E(M)) \leq k$.

Thus 1-V-ring \equiv V-ring.
Rosenberg and Zelinsky : If R is left and right Artinian PI-ring, then R is (left and right) π-V-ring.

In particular a module finite algebra over a commutative Artinian ring is a π - V ring.

Notation. π - $\underline{\mathrm{V}}$ is the class of all π-V-rings.
n - $\underline{\mathrm{V}}$ is the class of all n - V -rings.

So

$$
1-\underline{V} \subseteq 2-\underline{V} \subseteq \ldots \subseteq n-\underline{V} \subseteq \ldots \subseteq \pi-\underline{V}
$$

Hirano characterized n - V -rings and π - V -rings and proved:

1- $R \in \pi$ - V iff $\forall M_{R}$ with $\operatorname{Len}_{R}(M)<\infty, \operatorname{Len}_{R} E(M)<\infty$ iff $\forall M_{R}, \alpha_{\pi}(M)=0$ where $\alpha_{\pi}(M)=\cap N, N \leq M$ with $\operatorname{Len}_{R}(M / N)<\infty$.
2- $R \in n$ - $\underline{\mathrm{V}}$ iff $\forall M_{R}, \alpha_{n}(M)=0$ where $\alpha_{n}(M)=\cap N, N \leq M$ with $\operatorname{Len}_{R}(M / N) \leq n$.
3- Let S be a finite normalizing extension of R with a set of generators consisting of k-elements. Then

$$
R \in \pi-\underline{V} \Rightarrow S \in \pi-\underline{V}
$$

$$
R \in n-\underline{V} \Rightarrow S \in k n-\underline{V}
$$

4- If R is commutative, then
$R \in \pi-\underline{V}$ iff all localizations of R at maximal ideals are Artinian.
$R \in n-\underline{V}$ iff for all maximal ideals T of $R, \operatorname{Len}\left(R_{T}\right) \leq n$ as an R_{T}-module.
Question. Given $n \in \mathbb{N}$, does there exist a ring R such that $R \in n-\underline{V}$ but $R \notin(n-1) \underline{V}$? I.e, $(n-1)-\underline{V} \varsubsetneqq n-\underline{V}$?

If yes, we say that R has V -dimension n, and write $\mathrm{V}-\operatorname{dim}(R)=n$. If $R \in \pi-\underline{V}$ and $\forall n \in \mathbb{N}, R \notin n-\underline{V}$, we write $\operatorname{V}-\operatorname{dim}(R)=\infty$.

Note. V - $\operatorname{dim}(R)$ is not defined if $R \notin \pi-\underline{V}$.

We approach the above question through formal triangular matrix rings, and prove:

Theorem. Given $n \in \mathbb{N}$, there exist formal triangular matrix rings T_{1}, T_{2} and T_{3} with $\operatorname{V}-\operatorname{dim}\left(T_{1}\right)=n, \mathrm{~V}-\operatorname{dim}\left(T_{2}\right)=\infty$, and $T_{3} \notin \pi-\underline{V}$.

> Rudiments of Formal Triangular Matrix Rings

Let A and B be rings, ${ }_{B} M_{A}$ a bimodule, and

$$
T=\left(\begin{array}{cc}
A & 0 \\
M & B
\end{array}\right) .
$$

The following is recalled from [3].
The category Mod $-T$ is equivalent to a category Ω of triples $(X, Y)_{f}$ where $X \in \operatorname{Mod}_{A}$, $Y \in \operatorname{Mod}-B$ and $f: Y \otimes_{B} M \longrightarrow X$ is a map in $\operatorname{Mod}-A$.
Morphisms from $(X, Y)_{f}$ to $(U, V)_{g}$ in Ω are pairs $\left(\varphi_{1}, \varphi_{2}\right)$
$\varphi_{1}: X \longrightarrow U$ is a map in $\operatorname{Mod}-A, \varphi_{2}: Y \longrightarrow V$ is a map in $\operatorname{Mod}-B$ such that

is commutative. In fact the right T-module corresponding to $(X, Y)_{f}$ is the additive group $X \oplus Y$ with the right T-action:

$$
(x, y)\left(\begin{array}{cc}
a & 0 \\
m & b
\end{array}\right)=(x a+f(y \otimes m), y b)
$$

If $e_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $e_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ then $e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}, e_{1} e_{2}=e_{2} e_{1}=0$ and $e_{1}+e_{2}=1$. So $A \cong e_{1} T e_{1}$ and $B \cong e_{2} T e_{2}$.

For any Z_{T} we have $Z_{T}=Z e_{1} \oplus Z e_{2},\left(Z e_{1}\right)_{e_{1} T e_{1}}$ and $\left(Z e_{2}\right)_{e_{2} T e_{2}}$ are modules. Put $X=Z e_{1}, Y=Z e_{2}$, so we get X_{A} and Y_{B}.

Define: $f: Y \otimes_{B} M \longrightarrow X$ by $f(y, m)=y\left(\begin{array}{cc}0 & 0 \\ m & 0\end{array}\right)=y\left(\begin{array}{cc}0 & 0 \\ m & 0\end{array}\right) e_{1} \in X$ f is A-linear, and $Z_{T}=(X \otimes Y)_{T}$ corresponds to $(X, Y)_{f} \in \Omega$.

If $Z^{\prime} \leq Z_{T}$ then $Z^{\prime}=Z^{\prime} e_{1} \oplus Z^{\prime} e_{2} \equiv\left(X^{\prime} \oplus Y^{\prime}\right)_{T}$ with $X^{\prime}=Z^{\prime} e_{1}, Y^{\prime}=Z^{\prime} e_{2}$, $X^{\prime} \leq X_{A}, Y^{\prime} \leq Y_{B}$ and Z^{\prime} corresponds to $\left(X^{\prime}, Y^{\prime}\right)_{f^{\prime}}$ where $f^{\prime}=f o\left(j_{2} \otimes I d_{M}\right): Y^{\prime} \otimes M \longrightarrow X^{\prime}$ and $j_{2}: Y^{\prime} \longrightarrow Y$ is the inclusion map. Conversely if $X^{\prime} \leq X_{A}, Y^{\prime} \leq Y_{B}, f^{\prime}=f o\left(j_{2} \otimes I d_{M}\right)$ satisfy $I m f^{\prime} \leq X^{\prime}$ then $\left(X^{\prime}, Y^{\prime}\right)_{f^{\prime}} \in \Omega$, and $\left(X^{\prime} \oplus Y^{\prime}\right)_{T} \leq(X \oplus Y)_{T}$ which in Ω means that $\left(j_{1}, j_{2}\right):\left(X^{\prime}, Y^{\prime}\right)_{f^{\prime}} \longrightarrow(X, Y)_{f}$ is a monomorphism.

Lemma. If Z_{T} is simple then Z corresponds to either $(X, 0)_{0}$ or $(0, Y)_{0}$.
Let now $(X, Y)_{f} \in \Omega$. Define $\tilde{f}: Y \longrightarrow \operatorname{Hom}_{A}(M, X), \tilde{f}(y)(m)=f(y \otimes m)$

Proposition.(Müller [8]) The injective envelope of $Z(X \oplus Y)_{T}$ corresponds to $\left(E(X), \operatorname{Hom}_{A}(M, E(X) \oplus E(\operatorname{ker} \tilde{f}))_{\delta}\right.$ where
$\delta:\left\{\operatorname{Hom}_{A}(M, E(X)) \oplus E(\operatorname{ker} \tilde{f})\right\} \otimes_{B} M \longrightarrow E(X)$
$\delta((\eta, \mu) \otimes m)=\eta(m), \forall \eta \in \operatorname{Hom}_{A}(M, E(X)), \mu \in E(\operatorname{ker} \tilde{\beta}), m \in M$.
Furthermore if $\varphi_{1}: X \longrightarrow E(X)$ is the natural embedding,
$\varphi_{2}: Y \longrightarrow \operatorname{Hom}_{A}(M, E(X)) \oplus E(\operatorname{ker} \tilde{f})$ is given by $\varphi_{2}(y)=(\iota o \tilde{f}(y), \tau(y))$ where $\tau: Y \longrightarrow E(\operatorname{ker} \tilde{f})$ is an extension of the inclusion $\operatorname{ker} \tilde{f} \hookrightarrow E(\operatorname{ker} \tilde{f})$,
then $\left(\varphi_{1}, \varphi_{2}\right)$ corresponds to an essential monomorphism: $Z \longrightarrow E(Z)$.

Conclusion: If $Z=(X \oplus Y)_{T}$ is simple, then $E(Z)$ corresponds to either $\left(E(X), \operatorname{Hom}_{A}(M, E(X))_{\delta}\right.$ or $(0, E(Y))_{0}$ where $\delta: \operatorname{Hom}_{A}(M, E(M)) \otimes_{B} M \longrightarrow E(X)$ with $\delta(\eta) \otimes m=\eta(m)$.

Theorem.(Haghany [2]) Let $Z=(X \oplus Y)_{T}$. Then K-dim(Z) exists if and only if $\mathrm{K}-\operatorname{dim}\left(X_{A}\right)$ and $\mathrm{K}-\operatorname{dim}\left(Y_{B}\right)$ exist, and in this case $\mathrm{K}-\operatorname{dim}\left(Z_{T}\right)=\max \left\{\mathrm{K}-\operatorname{dim}\left(X_{A}\right)\right.$, K - $\left.\operatorname{dim}\left(Y_{B}\right)\right\}$. In particular Z_{T} is Artinian if and only if X_{A} and Y_{B} are Artinian. These are valid if we replace Krull-dimension by Noetherian dimension, hence in particular Z_{T} is Noetherian if and only if X_{A} and Y_{B} are Noetherian.

Lemma. Let $Z=(X \oplus Y)_{T}$. Then Z_{T} has finite length if and only if X_{A} and Y_{B} are of finite length. If Z_{T} is of finite length, then

$$
L e_{T}(Z)=L e_{A}(X)+L e_{B}(Y)
$$

Proof. $(X \oplus 0)_{T}$ and X_{A} have isomorphic lattices of submodules. Suppose Z_{T} is of finite length, As $(X \oplus 0) \leq Z_{T}$, we get $\operatorname{Le}_{A}(X)<\infty$. Now $\frac{Z}{(X \oplus 0)}$ corresponds to $(0, Y)_{0}$, hence $\operatorname{Le}_{B}(Y)=\operatorname{Le}_{T}\left(\frac{Z}{(X \oplus 0)}\right)<\infty$. Since composition length is additive we have $\operatorname{Le}_{T}(Z)=\operatorname{Le}_{A}(X)+\operatorname{Le}_{B}(Y)$. Conversely suppose X_{A} and Y_{B} are of finite length. Then X_{A} and Y_{B} are both Artinian and Noetherian, and it follows that Z_{T} is both Artinian and Noetherian, hence Z_{T} is of finite length.

Theorem. Let $T=\left(\begin{array}{cc}A & 0 \\ M & B\end{array}\right)$. Then $\mathrm{V}-\operatorname{dim}(T)=n$ if and only if the following hold.
(1)- $B \in n \underline{V}$ and \forall simple $X_{A}, \operatorname{Le}_{A}(E(X))+\operatorname{Le}_{B}\left(\operatorname{Hom}_{A}(M, E(X))\right) \leq n\left(^{*}\right)$.
(2)- Either V - $\operatorname{dim}(B)=n$ or \exists simple X_{A} for which the equality in $\left(^{*}\right)$ holds.

Proof. Suppose $Z=(X \oplus Y)_{T}$ is simple. Then $E(Z)$ corresponds to ($0, E(Y)$) or to $\left(E(X), \operatorname{Hom}_{A}(M, E(X))\right)_{\delta}$. Now by previous Lemma, (1) $\Rightarrow T \in n-\underline{\mathrm{V}}$;
$(2) \Rightarrow T \notin(n-1)-\underline{\mathrm{V}}$. Consequently (1) and (2) imply V - $\operatorname{dim}(T)=n$.
Conversely suppose V - $\operatorname{dim}(T)=n$. Then (1) holds. Since $T \notin(n-1)-\underline{V}$, either \exists simple T-module corresponding to $(X, 0)_{0}$ with X_{A} (necessarily simple) satisfying $\operatorname{Le}_{T}\left(E\left((X, 0)_{0}\right) \nless n-1\right.$ or \exists simple T-module of the form $(0, Y)_{0}$ with Y_{B} simple satisfying $\operatorname{Le}_{T}\left(E\left((0, Y)_{)}\right)\right)=\operatorname{Le}_{B}(E(Y)) \nless n-1$, giving $B \notin(n-1)-\underline{\mathrm{V}}$, consequently by (1) $\mathrm{V}-\operatorname{dim}(B)=n$. Hence (2) holds.

Corollary. V-dim $(A \times B)=\max \{V-\operatorname{dim}(A), \mathrm{V}-\operatorname{dim}(B)\}$.
Proof. In previous theorem put $M=0$.
Corollary. Given $n \geqslant 2, \exists T_{1}$ with V - $\operatorname{dim}\left(T_{1}\right)=n$.
Proof. Let F be a field, $M=F^{(n-1)}$ and $T_{1}=\left(\begin{array}{cc}F & 0 \\ M & F\end{array}\right)$. Then $\operatorname{V}-\operatorname{dim}(F)=1$ and F is the only simple F-module, so $\operatorname{Le}_{F}\left[\operatorname{Hom}_{F}(M, F)\right]=\operatorname{dim}(M)=n-1$. Con-
sequently $\operatorname{Le}_{F}(F)+\operatorname{Le}_{F}\left[\operatorname{Hom}_{F}(M, F)\right]=n$.
Theorem There exists a formal triangular matrix ring T_{2} with V - $\operatorname{dim}\left(T_{2}\right)=\infty$.
Proof. Let $A=A_{1}(k)$ be the first Weyl algebra over a field of characteristic zero. Choose a countable infinite set of non-isomorphic simple A-modules X_{1}, X_{2}, \cdots. Let $Z_{i}=X_{i}^{(i)}, M=\sum_{i \geqslant 1} \oplus Z_{i}$, and $T_{2}=\left(\begin{array}{cc}A & 0 \\ M & k\end{array}\right)$. If X is an arbitrary simple A module, we have:
$\operatorname{Hom}_{A}(M, E(X))=\operatorname{Hom}_{A}\left(\sum_{i \geqslant 1} \oplus Z_{i}, E(X)\right) \cong \prod_{i \geqslant 1} \operatorname{Hom}_{A}\left(Z_{i}, E(X)\right)$.
Suppose $X \cong X_{j}$ for some j. Then
$\Pi_{i \geqslant 1} \operatorname{Hom}_{A}\left(Z_{i}, E(X)\right) \cong \operatorname{Hom}_{A}\left(Z_{j}, E\left(X_{j}\right)\right) \cong\left(\operatorname{Hom}_{A}\left(X_{j}, E\left(X_{j}\right)\right)\right)^{(j)}$.
Since $\operatorname{Hom}_{A}\left(X_{j}, E\left(X_{j}\right)\right)$ embeds in $\operatorname{Hom}_{A}\left(X_{j}, X_{j}\right)$, and the endomorphism rings of simple A-modules are finite dimensional k-vector spaces, we deduce that $j \leqslant \operatorname{dim}_{k} \operatorname{Hom}_{A}(M, E(X))<\infty$. If on the other hand $X \nexists X_{j}$ for all $1 \leq j$, we conclude that $\operatorname{Hom}_{A}(M, E(X))=0$. It follows that $\operatorname{V}-\operatorname{dim}(T)=\infty$.

We now construct a formal triangular matrix ring T_{3} for which V -dimension is not defined.

Example: Let p be a fixed prime number, and set $T_{3}=\left(\begin{array}{cc}\mathbb{Z} & 0 \\ \mathbb{Z}_{p \infty} & \mathbb{Z}\end{array}\right)$.
We observe below that $T_{3} \notin \pi-\underline{\mathrm{V}}$. In fact simple \mathbb{Z}-modules are of the form $\overline{\mathbb{Z}}_{q}$ with $\mathbb{Z}_{q^{\infty}}$ as its \mathbb{Z}-injective envelope, $(q$ is a prime number $)$. Now triple $\left(\overline{\mathbb{Z}}_{p}, 0\right)_{0}$ corresponds to a simple T_{3}-module whose injective envelope gives $\left(\mathbb{Z}_{p}, \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{p^{\infty}}, \mathbb{Z}_{p^{\infty}}\right)\right)_{\delta}$.
Since the endomorphism ring of $\mathbb{Z}_{p \infty}$ is not of finite length as a \mathbb{Z}-module we deduce that $T_{3} \notin \pi$ - $\underline{\mathrm{V}}$.

FURTHER DEVELOPMENTS

Co-Noetherian ring R is one such that the injective hull of every simple R-module is Artinian. Of course all $\pi-\underline{\mathrm{V}}$ rings are co-Noetherian and there are many other examples including the first Weyl algebra over finitely generated commutative \mathbb{Z}-algebras. In a forthcoming paper, we have defined a dimension function that measures how distant a ring is from being co-Noetherian. The crucial step towards this is the following fact: Given a positive integer n there exists a ring R with a simple module whose injective envelope has Krull dimension n.
One may analogously consider co-Artinian rings using Noetherian dimension.

References

[1] J. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76(1970),75-79.
[2] A. Haghany, Krull and Noetherian dimensions for modules over formal triangular matrix rings, Iran. J. Science and Technology Transaction A, Vol.27, No.A2, 403-406(2003).
[3] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra, 27(11) (1999) 5507-5525.
[4] Y. Hirano, On injective hulls of simple modules, J. Algebra, 225,299-308(2000).
[5] E. Matlis, Modules with descending chain condition, Trans. Amer. Math. Soc. 97(1960),495-508.
[6] J. C. McConnell and J. C. Robson, Homomorphisms and extensions of modules over certain differential polynomial rings, J. Algebra, 26, 319-342 (1973).
[7] G. O. Michler and O. E. Villamayor, On rings whose simple modules are injective, J. Algebra, 25(1973),185-201.
[8] M. Müller, Rings of quotients of generalized matrix rings, Comm. Algebra, 15, 1991-2015 (1987).
[9] B. L. Osofsky, On twisted polynomial rings, J. Algebra, 18(1971)597-607.
[10] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z, 70(1959),372380.
[11] R. L. Snider, Injective hulls of simple modules over group rings, in "Proceedings of the Ohio University Ring Theory Conference" Vol. 70, pp. 223-226, Deckker, New York, 1977.

