Infinite dimensional tilting theory

Lidia Angeleri Hügel
Università dell'Insubria Varese, Italy

June 2008

Notation. Let R be a ring (associative, with 1),
Mod- R the category of all right R-modules,
mod- R the subcategory of all modules M admitting a projective resolution

$$
\cdots \rightarrow P_{k+1} \rightarrow P_{k} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

where all P_{i} are finitely generated.

Definition. A module T_{R} is called a tilting module provided

Definition. A module T_{R} is called a tilting module provided (T1) $\operatorname{pdim} T<\infty$;

Definition. A module T_{R} is called a tilting module provided (T1) $\operatorname{pdim} T<\infty$;
(T2) $\operatorname{Ext}_{R}^{i}\left(T, T^{(I)}\right)=0$ for each $i>0$ and all sets I;

Definition. A module T_{R} is called a tilting module provided
(T1) $\operatorname{pdim} T<\infty$;
(T2) $\operatorname{Ext}_{R}^{i}\left(T, T^{(I)}\right)=0$ for each $i>0$ and all sets I;
(T3) There exists a long exact sequence

$$
0 \rightarrow R_{R} \rightarrow T_{0} \rightarrow \cdots \rightarrow T_{r} \rightarrow 0
$$

with $T_{i} \in \operatorname{Add} T$ for each $0 \leq i \leq r$.

Tilting classes

If T is a tilting module, then

$$
T^{\perp}=\left\{M \in \operatorname{Mod}-R \mid \operatorname{Ext}_{R}^{i}(T, M)=0 \text { for all } i \geq 1\right\}
$$

is called tilting class.

Tilting classes

If T is a tilting module, then

$$
T^{\perp}=\left\{M \in \operatorname{Mod}-R \mid \operatorname{Ext}_{R}^{i}(T, M)=0 \text { for all } i \geq 1\right\}
$$

is called tilting class.
Two tilting modules T and T^{\prime} are equivalent if $T^{\perp}=T^{\prime \perp}$.

Tilting classes

Given a tilting module T, we set

$$
\mathcal{B}=T^{\perp} \quad \mathcal{A}={ }^{\perp}\left(T^{\perp}\right)
$$

and consider the cotorsion pair
$(\mathcal{A}, \mathcal{B})$.

Tilting classes

Properties:

- $(\mathcal{A}, \mathcal{B})$ is complete:

For every $M \in \operatorname{Mod}-R$ there are short exact sequences

$$
\begin{gathered}
0 \rightarrow M \xrightarrow{f} B \rightarrow A \rightarrow 0 \\
0 \rightarrow B^{\prime} \rightarrow A^{\prime} \xrightarrow{g} M \rightarrow 0
\end{gathered}
$$

where $A, A^{\prime} \in \mathcal{A}$ and $B, B^{\prime} \in \mathcal{B}$.

Tilting classes

Properties:

- $(\mathcal{A}, \mathcal{B})$ is complete:

For every $M \in \operatorname{Mod}-R$ there are short exact sequences

$$
\begin{gathered}
0 \rightarrow M \xrightarrow{f} B \rightarrow A \rightarrow 0 \\
0 \rightarrow B^{\prime} \rightarrow A^{\prime} \xrightarrow{g} M \rightarrow 0
\end{gathered}
$$

where $A, A^{\prime} \in \mathcal{A}$ and $B, B^{\prime} \in \mathcal{B}$.
(Then f is a left \mathcal{B}-approximation, g is a right \mathcal{A}-approximation.)

Tilting classes

Properties:

- $(\mathcal{A}, \mathcal{B})$ is complete:

For every $M \in \operatorname{Mod}-R$ there are short exact sequences

$$
\begin{aligned}
& 0 \rightarrow M \xrightarrow{f} B \rightarrow A \rightarrow 0 \\
& 0 \rightarrow B^{\prime} \rightarrow A^{\prime} \xrightarrow{g} M \rightarrow 0
\end{aligned}
$$

where $A, A^{\prime} \in \mathcal{A}$ and $B, B^{\prime} \in \mathcal{B}$.
(Then f is a left \mathcal{B}-approximation, g is a right \mathcal{A}-approximation.)

- $(\mathcal{A}, \mathcal{B})$ is hereditary: $\operatorname{Ext}_{R}^{i}(\mathcal{A}, \mathcal{B})=0$ for all $i \geq 2$.

Tilting classes

Properties:

- $(\mathcal{A}, \mathcal{B})$ is complete:

For every $M \in \operatorname{Mod}-R$ there are short exact sequences

$$
\begin{aligned}
& 0 \rightarrow M \xrightarrow{f} B \rightarrow A \rightarrow 0 \\
& 0 \rightarrow B^{\prime} \rightarrow A^{\prime} \xrightarrow{g} M \rightarrow 0
\end{aligned}
$$

where $A, A^{\prime} \in \mathcal{A}$ and $B, B^{\prime} \in \mathcal{B}$.
(Then f is a left \mathcal{B}-approximation, g is a right \mathcal{A}-approximation.)

- $(\mathcal{A}, \mathcal{B})$ is hereditary: $\operatorname{Ext}_{R}^{i}(\mathcal{A}, \mathcal{B})=0$ for all $i \geq 2$.
- $\operatorname{pdim} \mathcal{A}=\sup \{\operatorname{pdim} A \mid A \in \mathcal{A}\} \leq \operatorname{pdim} T$ is finite.

Tilting classes

Properties:

- $(\mathcal{A}, \mathcal{B})$ is complete:

For every $M \in \operatorname{Mod}-R$ there are short exact sequences

$$
\begin{aligned}
& 0 \rightarrow M \xrightarrow{f} B \rightarrow A \rightarrow 0 \\
& 0 \rightarrow B^{\prime} \rightarrow A^{\prime} \xrightarrow{g} M \rightarrow 0
\end{aligned}
$$

where $A, A^{\prime} \in \mathcal{A}$ and $B, B^{\prime} \in \mathcal{B}$.
(Then f is a left \mathcal{B}-approximation, g is a right \mathcal{A}-approximation.)

- $(\mathcal{A}, \mathcal{B})$ is hereditary: $\operatorname{Ext}_{R}^{i}(\mathcal{A}, \mathcal{B})=0$ for all $i \geq 2$.
- $\operatorname{pdim} \mathcal{A}=\sup \{\operatorname{pdim} A \mid A \in \mathcal{A}\} \leq \operatorname{pdim} T$ is finite.
- $\mathcal{A} \cap \mathcal{B}=\operatorname{Add} T$ is closed under coproducts.

Tilting classes

Theorem (A-Coelho 2001).
Let $\mathcal{B} \subseteq \operatorname{Mod}-R$, and $\mathcal{A}={ }^{\perp} \mathcal{B}$. Then
\mathcal{B} is a tilting class if and only if

1. $(\mathcal{A}, \mathcal{B})$ is a complete hereditary cotorsion pair,
2. $\operatorname{pdim} \mathcal{A}$ is finite,
3. $\mathcal{A} \cap \mathcal{B}$ is closed under coproducts.

Tilting classes

Theorem (Bazzoni-Eklof-Herbera-Sťovíček-Trlifaj 2005). Every tilting class is of the form

$$
\mathcal{B}=\left\{B \mid \operatorname{Ext}_{R}^{1}(\mathcal{S}, B)=0\right\}
$$

where $\mathcal{S} \subset \bmod -R$ with $\operatorname{pdim} \mathcal{S}<\infty$.

Example 1: Tilting modules and representation type.

Let R be a (connected) hereditary finite dimensional algebra. The Auslander-Reiten-quiver of R is of the form

\mathbf{p} is the preprojective component
\mathbf{q} is the preinjective component
\mathbf{t} is a family of regular components.

Example 1: Tilting modules and representation type.

There is a torsion theory $(\mathcal{R}, \mathcal{D})$ maximal w.r.t. $\mathbf{q} \subset \mathcal{D}$ and $\mathbf{t} \subset \mathcal{R}$

with a large tilting module $W \in \operatorname{Mod}-R$ such that $W^{\perp}=\mathcal{D}$ (Ringel 1979, Reiten - Ringel 2006).

Example 1: Tilting modules and representation type.

There is a torsion theory $(\mathcal{P}, \mathcal{L})$ maximal w.r.t. $\mathbf{p} \subset \mathcal{P}$ e $\mathbf{t} \subset \mathcal{L}$

with a large tilting module $L \in \operatorname{Mod}-R$ such that $L^{\perp}=\mathcal{L}$ (Lukas 1991, Kerner-Trlifaj 2005).

Example 1: Tilting modules and representation type.

Theorem (A-Herbera-Kerner-Trlifaj 2007).

1. R is tame if and only if L is endonoetherian.

Example 1: Tilting modules and representation type.

Theorem (A-Herbera-Kerner-Trlifaj 2007).

1. R is tame if and only if L is endonoetherian.
2. R is of finite representation type if and only if both L and W are endonoetherian.

Example 2: Tilting modules and finitistic dimensions.

Let R be right noetherian. Set

$$
\begin{aligned}
\mathcal{P} & =\{M \in \operatorname{Mod}-R \mid \operatorname{pdim} M<\infty\} \\
\mathcal{P}^{<\infty} & =\{M \in \bmod -R \mid \operatorname{pdim} M<\infty\}
\end{aligned}
$$

Example 2: Tilting modules and finitistic dimensions.

Let R be right noetherian. Set

$$
\begin{aligned}
\mathcal{P} & =\{M \in \operatorname{Mod}-R \mid \operatorname{pdim} M<\infty\} \\
\mathcal{P}^{<\infty} & =\{M \in \bmod -R \mid \operatorname{pdim} M<\infty\}
\end{aligned}
$$

The big and the little finitistic dimension of R are defined as

$$
\begin{aligned}
& \text { Findim } R=\operatorname{pdim} \mathcal{P} \\
& \text { findim } R=\operatorname{pdim} \mathcal{P}^{<\infty}
\end{aligned}
$$

Example 2: Tilting modules and finitistic dimensions.

Let R be right noetherian. Set

$$
\begin{aligned}
\mathcal{P} & =\{M \in \operatorname{Mod}-R \mid \operatorname{pdim} M<\infty\} \\
\mathcal{P}^{<\infty} & =\{M \in \bmod -R \mid \operatorname{pdim} M<\infty\}
\end{aligned}
$$

The big and the little finitistic dimension of R are defined as

$$
\begin{aligned}
& \text { Findim } R=\operatorname{pdim} \mathcal{P} \\
& \text { findim } R=\operatorname{pdim} \mathcal{P}^{<\infty}
\end{aligned}
$$

Open Problem: Is findim $R<\infty$ for any artin algebra R ?

Example 2: Tilting modules and finitistic dimensions.

Consider

$$
\mathcal{B}=\left\{B \mid \operatorname{Ext}_{R}^{1}\left(\mathcal{P}^{<\infty}, B\right)=0\right\}
$$

Example 2: Tilting modules and finitistic dimensions.

Consider

$$
\mathcal{B}=\left\{B \mid \operatorname{Ext}_{R}^{1}\left(\mathcal{P}^{<\infty}, B\right)=0\right\}
$$

Theorem 1 (A-Trlifaj 2002, A-Mendoza 2008).
Let R be right noetherian. Then

1. findim $R<\infty \Leftrightarrow \mathcal{B}=T^{\perp}$ for some tilting module T. In this case pdim $T=\operatorname{findim} R$.

Example 2: Tilting modules and finitistic dimensions.

Consider

$$
\mathcal{B}=\left\{B \mid \operatorname{Ext}_{R}^{1}\left(\mathcal{P}^{<\infty}, B\right)=0\right\}
$$

Theorem 1 (A-Trlifaj 2002, A-Mendoza 2008).

Let R be right noetherian. Then

1. findim $R<\infty \Leftrightarrow \mathcal{B}=T^{\perp}$ for some tilting module T. In this case pdim $T=\operatorname{findim} R$.
2. Findim $R=$ findim $R \Leftrightarrow \operatorname{pdim} T$ coincides with pdim \{modules with finite $\operatorname{Add} T$-resolution $\}$.

Example 2: Tilting modules and finitistic dimensions.

Application 1. Assume R is an artin algebra such that $\mathcal{P}<\infty$ is contravariantly finite in mod $-R$.

Example 2: Tilting modules and finitistic dimensions.

Application 1. Assume R is an artin algebra such that $\mathcal{P}<\infty$ is contravariantly finite in mod $-R$.

This means $T \in \bmod -R$, thus $\{$ modules with finite $\operatorname{Add} T$-resolution $\}=\operatorname{Add} T$.

Example 2: Tilting modules and finitistic dimensions.

Application 1. Assume R is an artin algebra such that $\mathcal{P}<\infty$ is contravariantly finite in mod $-R$.

This means $T \in \bmod -R$, thus $\{$ modules with finite $\operatorname{Add} T$-resolution $\}=\operatorname{Add} T$.

So Findim $R=$ findim $R<\infty$
(Auslander-Reiten 1991, Huisgen-Zimmermann-Smalø 1998).

Example 2: Tilting modules and finitistic dimensions.

Application 2. Assume R is an (Iwanaga-)Gorenstein ring: R is noetherian, idim R_{R} and $\operatorname{idim}{ }_{R} R$ are finite.

Example 2: Tilting modules and finitistic dimensions.

Application 2. Assume R is an (Iwanaga-)Gorenstein ring: R is noetherian, idim R_{R} and $\operatorname{idim}{ }_{R} R$ are finite.

Then $\operatorname{idim} R_{R}=\operatorname{idim}_{R} R=$ Findim R,

Example 2: Tilting modules and finitistic dimensions.

Application 2. Assume R is an (Iwanaga-)Gorenstein ring: R is noetherian, idim R_{R} and $\operatorname{idim}{ }_{R} R$ are finite.

Then $\operatorname{idim} R_{R}=\operatorname{idim}_{R} R=$ Findim R, and $T=I_{0} \oplus \ldots \oplus I_{n}$ where

$$
0 \rightarrow R \rightarrow I_{0} \rightarrow \ldots \rightarrow I_{n} \rightarrow 0
$$

is a minimal injective coresolution.

Example 2: Tilting modules and finitistic dimensions.

Application 2. Assume R is an (Iwanaga-)Gorenstein ring: R is noetherian, idim R_{R} and $\operatorname{idim}{ }_{R} R$ are finite.

Then $\operatorname{idim} R_{R}=\operatorname{idim}_{R} R=$ Findim R, and $T=I_{0} \oplus \ldots \oplus I_{n}$ where

$$
0 \rightarrow R \rightarrow I_{0} \rightarrow \ldots \rightarrow I_{n} \rightarrow 0
$$

is a minimal injective coresolution.
Thus $\{$ modules with finite $\operatorname{Add} T$-resolution $\}=\operatorname{Add} T$.

Example 2: Tilting modules and finitistic dimensions.

Application 2. Assume R is an (Iwanaga-)Gorenstein ring: R is noetherian, idim R_{R} and $\operatorname{idim}{ }_{R} R$ are finite.

Then $\operatorname{idim} R_{R}=\operatorname{idim}_{R} R=$ Findim R, and $T=I_{0} \oplus \ldots \oplus I_{n}$ where

$$
0 \rightarrow R \rightarrow I_{0} \rightarrow \ldots \rightarrow I_{n} \rightarrow 0
$$

is a minimal injective coresolution.
Thus $\{$ modules with finite $\operatorname{Add} T$-resolution $\}=\operatorname{Add} T$.
So Findim $R=$ findim $R<\infty$ (A-Herbera-Trlifaj 2006).

Example 2: Tilting modules and finitistic dimensions.

Theorem (A-Mendoza 2008).
If R is right noetherian, then for every tilting module T we have
Findim $R \leq \operatorname{pdim} T+\operatorname{idim} T$

Example 3: Tilting modules and localization.

$\mathbb{Q} \oplus \mathbb{Q} / \mathbb{Z}$ is a tilting \mathbb{Z}-module.
Its tilting class is the class of divisible groups.

This pattern occurs in many situations !

Example 3: Tilting modules and localization.

Theorem (Schofield) Let Σ be a set of morphisms between finitely generated projective right R-modules. Then there is a ring homomorphism $\lambda: R \rightarrow R_{\Sigma}$ such that

1. λ is Σ-inverting: if $\alpha: P \rightarrow Q$ belongs to Σ, then $\alpha \otimes_{R} 1_{R_{\Sigma}}: P \otimes_{R} R_{\Sigma} \rightarrow Q \otimes_{R} R_{\Sigma}$ is an isomorphism
2. λ is universal with respect to 1 .

Example 3: Tilting modules and localization.

Theorem (Schofield) Let Σ be a set of morphisms between finitely generated projective right R-modules. Then there is a ring homomorphism $\lambda: R \rightarrow R_{\Sigma}$ such that

1. λ is Σ-inverting: if $\alpha: P \rightarrow Q$ belongs to Σ, then $\alpha \otimes_{R} 1_{R_{\Sigma}}: P \otimes_{R} R_{\Sigma} \rightarrow Q \otimes_{R} R_{\Sigma}$ is an isomorphism
2. λ is universal with respect to 1 .
$\lambda: R \rightarrow R_{\Sigma}$ is a ring epimorphism with $\operatorname{Tor}_{1}^{R}\left(R_{\Sigma}, R_{\Sigma}\right)=0$, the universal localization of R at Σ.

Example 3: Tilting modules and localization.

Let now $\mathcal{U} \subset \bmod -R$ be a set of R-modules of pdim 1 . For each $U \in \mathcal{U}$, fix a projective resolution in $\bmod -R$

$$
0 \rightarrow P \xrightarrow{\alpha U} Q \rightarrow U \rightarrow 0
$$

and set $\Sigma=\left\{\alpha_{U} \mid \boldsymbol{U} \in \mathcal{U}\right\}$.
$R_{\mathcal{U}}$ denotes the universal localization of R at Σ.

Example 3: Tilting modules and localization.

Theorem (A-Sánchez 2007).
Let $\mathcal{U} \subset \bmod -R$ be a set of R-modules of pdim 1 . If R embeds in $R_{\mathcal{U}}$ and $\operatorname{pdim} R_{\mathcal{U}} \leq 1$, then

$$
R_{\mathcal{U}} \oplus R_{\mathcal{U}} / R
$$

is a tilting module.

Example 3: Tilting modules and localization.

Application 1: Classification of tilting modules.
Over a Dedekind domain, every tilting module is equivalent to a module of the form

$$
R_{\mathcal{U}} \oplus R_{\mathcal{U}} / R
$$

where $\mathcal{U}=\{R / \mathfrak{m} \mid \mathfrak{m} \in \mathfrak{P}\}$ and \mathfrak{P} is a set of maximal ideals of R (Trlifaj-Wallutis / Bazzoni-Eklof-Trlifaj 2005).

Example 3: Tilting modules and localization.

Application 1: Classification of tilting modules.
Over a Dedekind domain, every tilting module is equivalent to a module of the form

$$
R_{\mathcal{U}} \oplus R_{\mathcal{U}} / R
$$

where $\mathcal{U}=\{R / \mathfrak{m} \mid \mathfrak{m} \in \mathfrak{P}\}$ and \mathfrak{P} is a set of maximal ideals of R (Trlifaj-Wallutis / Bazzoni-Eklof-Trlifaj 2005).

Similar results also for
Prüfer domains, commutative Gorenstein rings, HNP-rings ...

Example 3: Tilting modules and localization.

Application 1: Classification of tilting modules.
Over the Kronecker-algebra

every tilting module is equivalent to one of the following:

1. a finite dimensional tilting module
2. the tilting module L with $L^{\perp}=\mathcal{L}$
3. $R_{\mathcal{U}} \oplus R_{\mathcal{U}} / R$ where \mathcal{U} is a set of simple regular modules.

Example 3: Tilting modules and localization.

Application 1: Classification of tilting modules.
Over the Kronecker-algebra

every tilting module is equivalent to one of the following:

1. a finite dimensional tilting module
2. the tilting module L with $L^{\perp}=\mathcal{L}$
3. $R_{\mathcal{U}} \oplus R_{\mathcal{U}} / R$ where \mathcal{U} is a set of simple regular modules.

In particular, $W \sim R_{\mathcal{U}} \oplus R_{\mathcal{U}} / R$ where \mathcal{U} is the set of all simple regular modules.

Example 3: Tilting modules and localization.

Application 2 (A-Herbera-Trlifaj 2005).

Let R be commutative, and let S be a multiplicative subset consisting of non-zero-divisors. Set $Q=S^{-1} R$.

Example 3: Tilting modules and localization.

Application 2 (A-Herbera-Trlifaj 2005).

Let R be commutative, and let S be a multiplicative subset consisting of non-zero-divisors. Set $Q=S^{-1} R$.
The following are equivalent.

1. $\operatorname{pdim} Q_{R} \leq 1$.
2. $\operatorname{Gen} Q_{R}$ is the class of S-divisible modules.
3. Q / R is a direct sum of countably presented submodules.

Example 3: Tilting modules and localization.

Application 2 (A-Herbera-Trlifaj 2005).

Let R be commutative, and let S be a multiplicative subset consisting of non-zero-divisors. Set $Q=S^{-1} R$.
The following are equivalent.

1. $\operatorname{pdim} Q_{R} \leq 1$.
2. $\operatorname{Gen} Q_{R}$ is the class of S-divisible modules.
3. Q / R is a direct sum of countably presented submodules.
(For domains: Hamsher 1971, Matlis 1973, Lee 1989).

Example 4.

Let R be a commutative domain, and Q its quotient field.
The Fuchs' divisible module δ is a tilting module of $\operatorname{pdim} \delta=1$. Its tilting class is the class of all divisible modules. (Facchini 1987)

Example 4.

Let R be a commutative domain, and Q its quotient field.
The Fuchs' divisible module δ is a tilting module of $\operatorname{pdim} \delta=1$. Its tilting class is the class of all divisible modules.
(Facchini 1987)

- If $\operatorname{pdim} Q_{R} \leq 1$, then δ is equivalent to $Q \oplus Q / R$.

Example 4.

Let R be a commutative domain, and Q its quotient field.
The Fuchs' divisible module δ is a tilting module of $\operatorname{pdim} \delta=1$. Its tilting class is the class of all divisible modules.
(Facchini 1987)

- If $\operatorname{pdim} Q_{R} \leq 1$, then δ is equivalent to $Q \oplus Q / R$.
- If $\operatorname{pdim} Q_{R}>1$:

Question: Is δ related to the localization $\lambda: R \rightarrow Q$?

Ring epimorphisms

From now on, let T be a tilting module of $\operatorname{pdim} T=1$.

Ring epimorphisms

From now on, let T be a tilting module of $\operatorname{pdim} T=1$. Recall:
(T3) There exists an exact sequence

$$
0 \rightarrow R \rightarrow T_{0} \rightarrow T_{1} \rightarrow 0
$$

where T_{0}, T_{1} belong to $\operatorname{Add} T$.

Ring epimorphisms

From now on, let T be a tilting module of $\operatorname{pdim} T=1$.
Recall:
(T3) There exists an exact sequence

$$
0 \rightarrow R \rightarrow T_{0} \rightarrow T_{1} \rightarrow 0
$$

where T_{0}, T_{1} belong to $\operatorname{Add} T$.
Consider the perpendicular category

$$
\hat{T}_{1}=\left\{M \in \operatorname{Mod}-R \mid \operatorname{Hom}_{R}\left(T_{1}, M\right)=\operatorname{Ext}_{R}^{1}\left(T_{1}, M\right)=0\right\}
$$

Ring epimorphisms

There is a ring epimorphism $\lambda: R \rightarrow S$ which induces an equivalence

$$
\lambda_{*}: \operatorname{Mod}-S \rightarrow \hat{T}_{1}
$$

(Gabriel-de la Peña 1987).

Ring epimorphisms

There is a ring epimorphism $\lambda: R \rightarrow S$ which induces an equivalence

$$
\lambda_{*}: \operatorname{Mod}-S \rightarrow \hat{T}_{1}
$$

(Gabriel-de la Peña 1987).

Note: If $\operatorname{Hom}_{R}\left(T_{1}, T_{0}\right)=0$, then λ is

- injective
- a homological epimorphism

Ring epimorphisms

Theorem (Geigle-Lenzing 1991). The following statements are equivalent for a ring homomorphism $\lambda: R \rightarrow S$.

1. λ is a ring epimorphismus, and $\operatorname{Tor}_{i}^{R}(S, S)=0$ for all $i \geq 1$.
2. $\operatorname{Ext}_{R}^{i}(M, N) \cong \operatorname{Ext}_{S}^{i}(M, N)$ for all $M, N \in \operatorname{Mod}-S, i \geq 1$.

Then λ is said to be a homological ring epimorphism.

Ring epimorphisms

Theorem (A-Sánchez 2007). The following are equivalent.

1. There is an exact sequence $0 \rightarrow R \rightarrow T_{0} \rightarrow T_{1} \rightarrow 0$ with $T_{0}, T_{1} \in \operatorname{Add} T$ and $\operatorname{Hom}_{R}\left(T_{1}, T_{0}\right)=0$.

Ring epimorphisms

Theorem (A-Sánchez 2007). The following are equivalent.

1. There is an exact sequence $0 \rightarrow R \rightarrow T_{0} \rightarrow T_{1} \rightarrow 0$ with $T_{0}, T_{1} \in \operatorname{Add} T$ and $\operatorname{Hom}_{R}\left(T_{1}, T_{0}\right)=0$.
2. There is an injective ring epimorphism $\lambda: R \rightarrow S$ such that $\operatorname{Tor}_{1}^{R}(S, S)=0$ and

$$
S \oplus S / R
$$

is a tilting module equivalent to T.

Example 4.

Let R be a commutative domain, and Q its quotient field.

- If $\operatorname{pdim} Q_{R}>1$, the Fuchs' tilting module δ is not of the form $S \oplus S / R$.

Example 4.

Let R be a commutative domain, and Q its quotient field.

- If $\operatorname{pdim} Q_{R}>1$, the Fuchs' tilting module δ is not of the form $S \oplus S / R$. Question: Is δ related to the localization $\lambda: R \rightarrow Q$?

Recollements

Let T and T_{1} be as above. Consider

$$
\mathcal{X}=\operatorname{Tria} T_{1}
$$

the smallest full triangulated subcategory of $\mathcal{D}(R)$ which contains T_{1} and is closed under small coproducts,

Recollements

Let T and T_{1} be as above. Consider

$$
\mathcal{X}=\operatorname{Tria} T_{1}
$$

the smallest full triangulated subcategory of $\mathcal{D}(R)$ which contains T_{1} and is closed under small coproducts,

$$
\mathcal{Y}=\operatorname{Ker} \operatorname{Hom}_{\mathcal{D}(R)}(\mathcal{X},-)
$$

Recollements

Let T and T_{1} be as above. Consider

$$
\mathcal{X}=\operatorname{Tria} T_{1}
$$

the smallest full triangulated subcategory of $\mathcal{D}(R)$ which contains T_{1} and is closed under small coproducts,

$$
\mathcal{Y}=\operatorname{Ker} \operatorname{Hom}_{\mathcal{D}(R)}(\mathcal{X},-)
$$

Note: \mathcal{Y} is closed under small coproducts, so \mathcal{X} is a smashing subcategory of $D(R)$.

Recollements

Then there is a recollement

Recollements

Then there is a recollement
that is,

- (q, incy $)$, (incy,$b)$, (inc $\mathcal{X}, a)$, and (a, j) are adjoint pairs
- $b \circ j=0$
- j is a full embedding
- For each $C \in D(R)$ there are triangles

$$
\begin{gathered}
\operatorname{incy} b(C) \rightarrow C \rightarrow j a(C) \leadsto \\
\operatorname{inc}_{\mathcal{X}} a(C) \rightarrow C \rightarrow \operatorname{incy} q(C) \leadsto
\end{gathered}
$$

Recollements

Theorem (A-König-Liu 2008). Every tilting module T of projective dimension one induces a recollement

with the following properties:

- $\mathcal{X}=$ Tria T_{1} where T_{1} is an exceptional object of $\mathcal{D}(R)$.
- $\mathcal{Y}=\operatorname{Tria} T_{2}$ where T_{2} is a self-compact object of $\mathcal{D}(R)$.

Recollements

Theorem (A-König-Liu 2008). Every tilting module T of projective dimension one induces a recollement

with the following properties:

- $\mathcal{X}=$ Tria T_{1} where T_{1} is an exceptional object of $\mathcal{D}(R)$.
- $\mathcal{Y}=\operatorname{Tria} T_{2}$ where T_{2} is a self-compact object of $\mathcal{D}(R)$.
- T_{2} is exceptional $\Leftrightarrow \lambda$ is a homological epimorphism. In this case λ_{*} induces an equivalence $\mathcal{D}(S) \sim \mathcal{Y}$.

Recollements

Theorem (A-König-Liu 2008). Every tilting module T of projective dimension one induces a recollement

with the following properties:

- $\mathcal{X}=$ Tria T_{1} where T_{1} is an exceptional object of $\mathcal{D}(R)$.
- $\mathcal{Y}=\operatorname{Tria} T_{2}$ where T_{2} is a self-compact object of $\mathcal{D}(R)$.
- T_{2} is exceptional $\Leftrightarrow \lambda$ is a homological epimorphism. In this case λ_{*} induces an equivalence $\mathcal{D}(S) \sim \mathcal{Y}$.
- T_{1} is self-compact \Leftrightarrow there are a ring V and an equivalence $\mathcal{X} \sim \mathcal{D}(V)$ taking $T_{1} \mapsto V_{V}$.
This occurs iff $T \in \bmod -R$ up to equivalence.

Example 4.

Let R be a commutative domain, and Q its quotient field. The tilting module δ always induces a recollement

Example 3.

Over the Kronecker-algebra $\bullet \underset{\beta}{\stackrel{\alpha}{\longrightarrow}} \bullet$

- the tilting module L induces the trivial recollement with $\mathcal{Y}=0, \mathcal{X}=\mathcal{D}(R)$.

Example 3.

Over the Kronecker-algebra $\stackrel{\alpha}{\underset{\beta}{\alpha}} \bullet$

- the tilting module L induces the trivial recollement with $\mathcal{Y}=0, \mathcal{X}=\mathcal{D}(R)$.
- the tilting module $W \sim R_{\mathcal{U}} \oplus R_{\mathcal{U}} / R$, where \mathcal{U} is the set of all simple regular modules, induces a recollement

where $R_{\mathcal{U}} \cong F^{d \times d}$ is a simple artinian ring.

Example 5.

Over the quasi-hereditary algebra $R=\begin{array}{ccc}1 & 2 \\ 2 & \oplus & 13 \\ 1\end{array} \oplus \begin{aligned} & 3 \\ & 2\end{aligned}$ the characteristic tilting module

$$
T=\begin{array}{ccc}
1 \\
2 \\
1
\end{array} \oplus \begin{gathered}
2 \\
13 \\
2
\end{gathered} \oplus \begin{aligned}
& \\
& \hline
\end{aligned}
$$

induces a recollement

where $\lambda: R \rightarrow R_{\mathcal{U}}$, the universal localization at $\mathcal{U}=\left\{\begin{array}{l}2 \\ 1\end{array}\right\}$, is not a homological epimorphism.

Example 5.

We choose the exact sequence

$$
0 \rightarrow R \rightarrow T_{0} \rightarrow T_{1} \rightarrow 0
$$

with

$$
T_{0}=\begin{gathered}
1 \\
2 \\
1
\end{gathered} \oplus \begin{array}{ccc}
2 & & 2 \\
13 \\
2
\end{array} \oplus \begin{gathered}
13 \\
2
\end{gathered} \quad \text { and } \quad T_{1}=\begin{aligned}
& 2 \\
& 1
\end{aligned}
$$

