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Notation. Let R be a ring (associative, with 1),
Mod-R the category of all right R-modules,

mod-R the subcategory of all modules M admitting a projective
resolution

-—>Pk+1—>Pk—>--~—>P1—>P0—>I\/I—>O

where all P; are finitely generated.
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Definition. A module Tg is called a tilting module provided

(T1) pdimT < oo;

(T2) Exti (T, TU)) =0 for each i > 0 and all sets /;

(T3) There exists a long exact sequence
0—-Rr—Tg—---—T,—0

with T; € AddT foreach 0 </ <r.
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Tilting classes

If T is a tilting module, then
T+ ={M e Mod—R | Exth (T,M) =0for all i > 1}
is called tilting class.

Two tilting modules T and T’ are equivalent if T+ = T’



Tilting classes

Given a tilting module T, we set
B = TJ_ A= J_(TJ_)
and consider the cotorsion pair

(A, B).
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Tilting classes

Properties:
o (A, B) is complete:
For every M € Mod-R there are short exact sequences

o-MLB A=
0B A& M=0
where A,A' € A and B, B’ € B.

(Then f is a left B-approximation, g is a right A-approximation.)
o (A, B) is hereditary: Extir (A,B) =0 foralli > 2.
e pdimA = sup{pdimA | A€ A} < pdimT is finite.

e ANB = AddT is closed under coproducts.



Tilting classes

Theorem (A—Coelho 2001).

Let B C Mod-R, and A =1B. Then

B is a tilting class if and only if
1. (A, B) is a complete hereditary cotorsion pair,
2. pdimA is finite,
3. AN B is closed under coproducts.



Tilting classes

Theorem (Bazzoni—Eklof-Herbera—Stovitek—Trlifaj 2005).
Every tilting class is of the form

B={B | Exti(S,B) =0}

where § C mod-R with pdimS < cc.



Example 1: Tilting modules and representation type.

Let R be a (connected) hereditary finite dimensional algebra.
The Auslander-Reiten-quiver of R is of the form

. )

p is the preprojective component
g is the preinjective component
t is a family of regular components.



Example 1: Tilting modules and representation type.

There is a torsion theory (R, D) maximal w.r.t. qC Dandt C R

with a large tilting module W € Mod-R such that W+ =D
(Ringel 1979, Reiten - Ringel 2006).



Example 1: Tilting modules and representation type.

There is a torsion theory (P, £) maximal w.rt. pCPetC L

. )

with a large tilting module L € Mod-R such that L+ = £
(Lukas 1991, Kerner—Trlifaj 2005).
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Example 1: Tilting modules and representation type.

Theorem (A-Herbera—Kerner—Trlifaj 2007).

1. R is tame if and only if L is endonoetherian.

2. R is of finite representation type if and only if both
L and W are endonoetherian.
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Example 2: Tilting modules and finitistic dimensions.

Let R be right noetherian. Set
P ={M € Mod-R | pdimM < oo}

P<® ={M € mod-R | pdimM < oo}

The big and the little finitistic dimension of R are defined as
FindimR = pdim P

findimR = pdim P<>°

Open Problem: Is findimR < oo for any artin algebra R ?
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Consider
B={B | Exth (P<*,B) =0}

Theorem 1 (A-Trlifaj 2002, A—Mendoza 2008).
Let R be right noetherian. Then

1. findimR < co < B = T for some tilting module T.
In this case pdim T = findimR.



Example 2: Tilting modules and finitistic dimensions.

Consider
B={B | Exth (P<*,B) =0}

Theorem 1 (A-Trlifaj 2002, A—Mendoza 2008).
Let R be right noetherian. Then

1. findimR < co < B = T for some tilting module T.
In this case pdim T = findimR.

2. FindimR = findimR < pdimT coincides with
pdim{modules with finite Add T-resolution}.



Example 2: Tilting modules and finitistic dimensions.

Application 1. Assume R is an artin algebra such that
P< is contravariantly finite in mod-R.



Example 2: Tilting modules and finitistic dimensions.

Application 1. Assume R is an artin algebra such that
P< is contravariantly finite in mod-R.

This means T € mod-R, thus
{modules with finite Add T-resolution} = AddT.



Example 2: Tilting modules and finitistic dimensions.

Application 1. Assume R is an artin algebra such that
P< is contravariantly finite in mod-R.

This means T € mod-R, thus
{modules with finite Add T-resolution} = AddT.

So FindimR = findimR < oo
(Auslander—Reiten 1991, Huisgen-Zimmermann—Smalg 1998).
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Application 2. Assume R is an (lwanaga—)Gorenstein ring:
R is noetherian, idim Rr and idim gR are finite.

Then idim Rg = idimgR = FindimR,
and T =l ®... DI, where

0O—-R—-lh—...—>1,—0

is a minimal injective coresolution.
Thus {modules with finite Add T-resolution} = AddT.

So FindimR = findimR < oo (A-Herbera—Trlifaj 2006).



Example 2: Tilting modules and finitistic dimensions.

Theorem (A—Mendoza 2008).
If R is right noetherian, then for every tilting module T we have

FindimR < pdimT +idimT



Example 3: Tilting modules and localization.

Q@ Q/Z is a tilting Z-module.
Its tilting class is the class of divisible groups.

This pattern occurs in many situations !
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finitely generated projective right R-modules. Then there is a ring
homomorphism A: R — Ry such that
1. Xis X-inverting: if a: P — @ belongs to X, then
a®rlr. : P®r Ry — Q ®r Rx is an isomorphism
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Example 3: Tilting modules and localization.

Theorem (Schofield) Let ¥ be a set of morphisms between
finitely generated projective right R-modules. Then there is a ring
homomorphism A: R — Ry such that
1. Xis X-inverting: if a: P — @ belongs to X, then
a®rlr. : P®r Ry — Q ®r Rx is an isomorphism

2. Ais universal with respect to 1.

A: R — Ryx is a ring epimorphism with Torf (Rz, Ry) = 0,
the universal localization of R at ¥.



Example 3: Tilting modules and localization.

Let now U4 C mod-R be a set of R-modules of pdim 1.
For each U € U, fix a projective resolution in mod-R

O—>P%Q—>U—>O

and set X = {ay | U e U}.

Ry, denotes the universal localization of R at X.



Example 3: Tilting modules and localization.

Theorem (A-Sanchez 2007).
Let Y C mod-R be a set of R-modules of pdim 1.
If R embeds in Ry and pdimR;; < 1, then

Ru@RM/R

is a tilting module.



Example 3: Tilting modules and localization.

Application 1: Classification of tilting modules.
Over a Dedekind domain, every tilting module is equivalent to a
module of the form

Ry & Rz,//R

where Y = {R/m | m € P} and P is a set of maximal ideals of R
(Trlifaj-Wallutis / Bazzoni-Eklof-Trlifaj 2005).
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Application 1: Classification of tilting modules.
Over a Dedekind domain, every tilting module is equivalent to a
module of the form

Ry & Rz,//R

where Y = {R/m | m € P} and P is a set of maximal ideals of R
(Trlifaj-Wallutis / Bazzoni-Eklof-Trlifaj 2005).

Similar results also for
Priifer domains, commutative Gorenstein rings, HNP—rings ...
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Application 1: Classification of tilting modules.
Over the Kronecker-algebra

mllg

every tilting module is equivalent to one of the following:
1. a finite dimensional tilting module
2. the tilting module L with L+ = £
3. Ry @ Ry/R where U is a set of simple regular modules.



Example 3: Tilting modules and localization.

Application 1: Classification of tilting modules.
Over the Kronecker-algebra

mllg

every tilting module is equivalent to one of the following:
1. a finite dimensional tilting module
2. the tilting module L with L+ = £
3. Ry @ Ry/R where U is a set of simple regular modules.

In particular, W ~ Ry @ Ry/R where U is the set of all simple
regular modules.
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Application 2 (A-Herbera—Trlifaj 2005).
Let R be commutative, and let S be a multiplicative subset
consisting of non-zero-divisors. Set Q@ = S7!R.
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3. Q/R is a direct sum of countably presented submodules.



Example 3: Tilting modules and localization.

Application 2 (A-Herbera—Trlifaj 2005).

Let R be commutative, and let S be a multiplicative subset
consisting of non-zero-divisors. Set Q@ = S7!R.

The following are equivalent.

1. pdimQr < 1.
2. GenQg is the class of S-divisible modules.

3. Q/R is a direct sum of countably presented submodules.

(For domains: Hamsher 1971, Matlis 1973, Lee 1989).
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Example 4.

Let R be a commutative domain, and Q its quotient field.

The Fuchs’ divisible module ¢ is a tilting module of pdimé = 1.
Its tilting class is the class of all divisible modules.
(Facchini 1987)

e If pdimQg < 1, then ¢ is equivalent to Q & Q/R.
o If pdimQr > 1:
Question: Is § related to the localization A\: R — Q 7
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Ring epimorphisms

From now on, let T be a tilting module of pdimT = 1.

Recall:

(T3) There exists an exact sequence
0—-R—-Typg—T1—0

where Tg, T1 belong to AddT.

Consider the perpendicular category

71 = {M € Mod-R | Homg(T1, M) = Extk (T1, M) = 0}
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There is a ring epimorphism A : R — S which induces an
equivalence
Ayt Mod-S — T3

(Gabriel-de la Pefia 1987).



Ring epimorphisms

There is a ring epimorphism A : R — S which induces an
equivalence
Ayt Mod-S — T3

(Gabriel-de la Pefia 1987).

Note: If Homg(T1, To) =0, then A is
e injective

e a homological epimorphism



Ring epimorphisms

Theorem (Geigle-Lenzing 1991). The following statements are
equivalent for a ring homomorphism A : R — S.

1. Xis a ring epimorphismus, and Torf*(S,S) = 0 for all i > 1.
2. Exth(M, N) = Exts(M, N) for all M, N € Mod—S, i > 1.

Then X is said to be a homological ring epimorphism.
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1. There is an exact sequence 0 - R — Tg — T1 — 0 with
To, T1 € AddT and HomR(Tl, To) =0.



Ring epimorphisms

Theorem (A-Sanchez 2007). The following are equivalent.

1. There is an exact sequence 0 - R — Tg — T1 — 0 with
To, T1 € AddT and HomR(Tl, To) =0.
2. There is an injective ring epimorphism A : R — S such that
Torf (5,5) =0 and
S®S/R

is a tilting module equivalent to T.
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o If pdimQr > 1,
the Fuchs' tilting module ¢ is not of the form S @ S/R.



Example 4.

Let R be a commutative domain, and @ its quotient field.

o If pdimQr > 1,
the Fuchs' tilting module ¢ is not of the form S @ S/R.

Question: Is ¢ related to the localization \: R — Q ?
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Recollements

Let T and T7 be as above. Consider
X = Tria T

the smallest full triangulated subcategory of D(R) which contains
T1 and is closed under small coproducts,

Y = Ker Hompg) (&, —)

Note: ) is closed under small coproducts,
so X' is a smashing subcategory of D(R).
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Recollements

Then there is a recollement
q

J
\ b / \_ inc /

¢ (qg,incy), (incy, b), (incy, a), and (a,j) are adjoint pairs
[ ] b Oj = 0

e jis a full embedding

that is,

e For each C € D(R) there are triangles
incyb(C) — C — ja(C) ~

incya(C) — C — incyq(C) ~



Recollements

Theorem (A—Konig—Liu 2008). Every tilting module T of
projective dimension one induces a recollement

y inc D(R) m X

‘\ J inc
with the following properties:

e X = Tria T1 where T is an exceptional object of D(R).
e Y = Tria T, where T is a self-compact object of D(R).



Recollements

Theorem (A—Konig—Liu 2008). Every tilting module T of
projective dimension one induces a recollement

B

‘\ J inc
with the following properties:

e X = Tria T1 where T is an exceptional object of D(R).
e Y = Tria T, where T is a self-compact object of D(R).

e T, is exceptional < )\ is a homological epimorphism.
In this case A\, induces an equivalence D(S) ~ ).



Recollements

Theorem (A—Konig—Liu 2008). Every tilting module T of
projective dimension one induces a recollement

N X ~D(V)

D)~ YT IpR) T o

‘\ J inc

with the following properties:

e X = Tria T1 where T is an exceptional object of D(R).
e Y = Tria T, where T is a self-compact object of D(R).

e T, is exceptional < )\ is a homological epimorphism.
In this case A, induces an equivalence D(S) ~ ).

e Ti is self-compact < there are a ring V' and an equivalence
X ~ D(V) taking T1 — Vy.
This occurs iff T € mod-R up to equivalence.



Example 4.

Let R be a commutative domain, and @ its quotient field.
The tilting module § always induces a recollement

D(Q) T . D(R) m Triad/R



Example 3.

Over the Kronecker-algebra o% .
B
e the tilting module L induces the trivial recollement with
Y =0, X =D(R).



Example 3.

Over the Kronecker-algebra o% .
B
e the tilting module L induces the trivial recollement with
Y =0, X =D(R).

o the tilting module W ~ Ry & Ry/R, where U is the set of all
simple regular modules, induces a recollement

D(Ry) (ine ) D(R) m Tria W,

~ Fd><d

where Ry = is a simple artinian ring.



Example 5.

1 2

Over the quasi-hereditary algebra R= 2 & 13 & g
1 2
the characteristic tilting module
1 2
T=2 @ 13 @& 3
1 2

induces a recollement

‘\ inc )

. . . 2
where A : R — Ry, the universal localization at U = { 1 Is

yf_ie ) p(R) D(K)
N

is not a homological epimorphism.



Example 5.

We choose the exact sequence
0-R—>Tyg—T1—0

with
1 2 2 5
To= 2 & 13 & 13 and T1 = 1
1 2 2



