#### INFINITE DIMENSIONAL TILTING THEORY

LIDIA ANGELERI HÜGEL Università dell'Insubria Varese, Italy

June 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

**Notation.** Let R be a ring (associative, with 1),

Mod-R the category of all right *R*-modules,

 $\operatorname{mod}$ -R the subcategory of all modules M admitting a projective resolution

$$\cdots \to P_{k+1} \to P_k \to \cdots \to P_1 \to P_0 \to M \to 0$$

where all  $P_i$  are finitely generated.

#### **Definition.** A module $T_R$ is called a **tilting module** provided

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# **Definition.** A module $T_R$ is called a **tilting module** provided (T1) pdim $T < \infty$ ;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

**Definition.** A module  $T_R$  is called a **tilting module** provided (*T1*) pdim  $T < \infty$ ; (*T2*) Ext<sup>*i*</sup><sub>*R*</sub> ( $T, T^{(I)}$ ) = 0 for each *i* > 0 and all sets *I*;

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

**Definition.** A module  $T_R$  is called a **tilting module** provided (*T1*) pdim  $T < \infty$ ; (*T2*) Ext<sup>*i*</sup><sub>*R*</sub> ( $T, T^{(I)}$ ) = 0 for each *i* > 0 and all sets *I*; (*T3*) There exists a long exact sequence  $0 \rightarrow R_R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0$ 

with  $T_i \in \operatorname{Add} T$  for each  $0 \le i \le r$ .

If T is a tilting module, then

$$T^{\perp} = \{ M \in \mathrm{Mod} - R \mid \mathrm{Ext}_{R}^{i}(T, M) = 0 \text{ for all } i \geq 1 \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is called tilting class.

If T is a tilting module, then

$$T^{\perp} = \{ M \in \operatorname{Mod} - R \mid \operatorname{Ext}_{R}^{i}(T, M) = 0 \text{ for all } i \geq 1 \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is called tilting class.

Two tilting modules T and T' are equivalent if  $T^{\perp} = T'^{\perp}$ .

Given a tilting module T, we set

$$\mathcal{B} = \mathcal{T}^{\perp}$$
  $\mathcal{A} = {}^{\perp}(\mathcal{T}^{\perp})$ 

and consider the cotorsion pair

 $(\mathcal{A},\mathcal{B}).$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

**Properties:** 

•  $(\mathcal{A}, \mathcal{B})$  is complete: For every  $M \in Mod$ -R there are short exact sequences

$$0 \to M \xrightarrow{f} B \to A \to 0$$
$$0 \to B' \to A' \xrightarrow{g} M \to 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where  $A, A' \in \mathcal{A}$  and  $B, B' \in \mathcal{B}$ .

Properties:

•  $(\mathcal{A}, \mathcal{B})$  is complete: For every  $M \in Mod$ -R there are short exact sequences

$$0 \to M \xrightarrow{f} B \to A \to 0$$
$$0 \to B' \to A' \xrightarrow{g} M \to 0$$

where  $A, A' \in \mathcal{A}$  and  $B, B' \in \mathcal{B}$ .

(Then f is a left  $\mathcal{B}$ -approximation, g is a right  $\mathcal{A}$ -approximation.)

Properties:

•  $(\mathcal{A}, \mathcal{B})$  is complete: For every  $M \in Mod$ -R there are short exact sequences

$$0 \to M \xrightarrow{f} B \to A \to 0$$
$$0 \to B' \to A' \xrightarrow{g} M \to 0$$

where  $A, A' \in \mathcal{A}$  and  $B, B' \in \mathcal{B}$ .

(Then f is a left  $\mathcal{B}$ -approximation, g is a right  $\mathcal{A}$ -approximation.)

•  $(\mathcal{A}, \mathcal{B})$  is hereditary:  $\operatorname{Ext}_{R}^{i}(\mathcal{A}, \mathcal{B}) = 0$  for all  $i \geq 2$ .

Properties:

•  $(\mathcal{A}, \mathcal{B})$  is complete: For every  $M \in Mod$ -R there are short exact sequences

$$0 \to M \xrightarrow{f} B \to A \to 0$$
$$0 \to B' \to A' \xrightarrow{g} M \to 0$$

where  $A, A' \in \mathcal{A}$  and  $B, B' \in \mathcal{B}$ . (Then f is a left  $\mathcal{B}$ -approximation, g is a right  $\mathcal{A}$ -approximation.)

- $(\mathcal{A}, \mathcal{B})$  is hereditary:  $\operatorname{Ext}_{R}^{i}(\mathcal{A}, \mathcal{B}) = 0$  for all  $i \geq 2$ .
- $pdim A = sup\{ pdim A \mid A \in A \} \le pdim T$  is finite.

Properties:

•  $(\mathcal{A}, \mathcal{B})$  is complete: For every  $M \in Mod$ -R there are short exact sequences

$$0 \to M \xrightarrow{f} B \to A \to 0$$
$$0 \to B' \to A' \xrightarrow{g} M \to 0$$

where  $A, A' \in \mathcal{A}$  and  $B, B' \in \mathcal{B}$ .

(Then f is a left  $\mathcal{B}$ -approximation, g is a right  $\mathcal{A}$ -approximation.)

- $(\mathcal{A}, \mathcal{B})$  is hereditary:  $\operatorname{Ext}_{R}^{i}(\mathcal{A}, \mathcal{B}) = 0$  for all  $i \geq 2$ .
- $pdim A = sup\{pdim A \mid A \in A\} \le pdim T$  is finite.
- $\mathcal{A} \cap \mathcal{B} = \operatorname{Add} \mathcal{T}$  is closed under coproducts.

#### **Theorem (A–Coelho 2001).** Let $\mathcal{B} \subseteq \operatorname{Mod-} R$ , and $\mathcal{A} = {}^{\perp} \mathcal{B}$ . Then

 $\ensuremath{\mathcal{B}}$  is a tilting class if and only if

- 1.  $(\mathcal{A}, \mathcal{B})$  is a complete hereditary cotorsion pair,
- 2.  $pdim\mathcal{A}$  is finite,
- 3.  $\mathcal{A} \cap \mathcal{B}$  is closed under coproducts.

#### **Theorem (Bazzoni–Eklof–Herbera–Sťovíček–Trlifaj 2005).** Every tilting class is of the form

$$\mathcal{B} = \{B \mid \mathsf{Ext}^1_R(\mathcal{S}, B) = 0\}$$

where  $S \subset \text{mod-}R$  with  $\text{pdim}S < \infty$ .

Let R be a (connected) hereditary finite dimensional algebra. The Auslander-Reiten-quiver of R is of the form



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

**p** is the preprojective component**q** is the preinjective component**t** is a family of regular components.

There is a torsion theory  $(\mathcal{R}, \mathcal{D})$  maximal w.r.t.  $\mathbf{q} \subset \mathcal{D}$  and  $\mathbf{t} \subset \mathcal{R}$ 



with a large tilting module  $W \in Mod-R$  such that  $W^{\perp} = \mathcal{D}$  (Ringel 1979, Reiten - Ringel 2006).

There is a torsion theory  $(\mathcal{P},\mathcal{L})$  maximal w.r.t.  $p\subset \mathcal{P}$  e  $t\subset \mathcal{L}$ 



with a large tilting module  $L \in Mod-R$  such that  $L^{\perp} = \mathcal{L}$  (Lukas 1991, Kerner–Trlifaj 2005).

・ロト・日本・モート モー うへぐ

#### Theorem (A-Herbera-Kerner-Trlifaj 2007).

1. R is *tame* if and only if L is endonoetherian.

#### Theorem (A-Herbera-Kerner-Trlifaj 2007).

- 1. R is *tame* if and only if L is endonoetherian.
- 2. *R* is of *finite representation type* if and only if both *L* and *W* are endonoetherian.

Let R be right noetherian. Set

$$\mathcal{P} = \{M \in \text{Mod-}R \mid \mathsf{pdim}M < \infty\}$$
  
 $\mathcal{P}^{<\infty} = \{M \in \text{mod-}R \mid \mathsf{pdim}M < \infty\}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let R be right noetherian. Set

$$\mathcal{P} = \{M \in \mathrm{Mod}\text{-}R \mid \mathsf{pdim}M < \infty\}$$

$$\mathcal{P}^{<\infty} = \{M \in \operatorname{mod-} R \mid \mathsf{pdim} M < \infty\}$$

The big and the little *finitistic dimension* of R are defined as

 $\mathsf{Findim} R = \mathsf{pdim} \, \mathcal{P}$ 

findim  $R = \operatorname{pdim} \mathcal{P}^{<\infty}$ 

Let R be right noetherian. Set

$$\mathcal{P} = \{ M \in \mathrm{Mod}\text{-}R \mid \mathsf{pdim}M < \infty \}$$

$$\mathcal{P}^{<\infty} = \{M \in \operatorname{mod-} R \mid \mathsf{pdim} M < \infty\}$$

The big and the little *finitistic dimension* of R are defined as

 $\mathsf{Findim} R = \mathsf{pdim} \, \mathcal{P}$ 

findim  $R = \operatorname{pdim} \mathcal{P}^{<\infty}$ 

**Open Problem:** Is findim  $R < \infty$  for any artin algebra R?

Consider

$$\mathcal{B} = \{B \mid \operatorname{Ext}^1_R(\mathcal{P}^{<\infty}, B) = 0\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider

$$\mathcal{B} = \{B \mid \operatorname{Ext}^{1}_{R}(\mathcal{P}^{<\infty}, B) = 0\}$$

#### **Theorem 1 (A–Trlifaj 2002, A–Mendoza 2008).** Let R be right noetherian. Then

1. findim $R < \infty \Leftrightarrow \mathcal{B} = T^{\perp}$  for some tilting module T. In this case pdimT = findimR.

Consider

$$\mathcal{B} = \{B \mid \operatorname{Ext}^{1}_{R}(\mathcal{P}^{<\infty}, B) = 0\}$$

#### **Theorem 1 (A–Trlifaj 2002, A–Mendoza 2008).** Let R be right noetherian. Then

- 1. findim $R < \infty \Leftrightarrow \mathcal{B} = T^{\perp}$  for some tilting module T. In this case pdimT = findimR.
- 2. FindimR = findimR  $\Leftrightarrow$  pdimT coincides with pdim{modules with finite AddT-resolution}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

**Application 1.** Assume *R* is an artin algebra such that  $\mathcal{P}^{<\infty}$  is contravariantly finite in mod-*R*.

**Application 1.** Assume *R* is an artin algebra such that  $\mathcal{P}^{<\infty}$  is contravariantly finite in mod-*R*.

This means  $T \in \text{mod-}R$ , thus  $\{\text{modules with finite Add} T\text{-resolution}\} = \text{Add} T$ .

**Application 1.** Assume *R* is an artin algebra such that  $\mathcal{P}^{<\infty}$  is contravariantly finite in mod-*R*.

This means  $T \in \text{mod-}R$ , thus {modules with finite AddT-resolution} = AddT. So FindimR = findim $R < \infty$ 

(Auslander-Reiten 1991, Huisgen-Zimmermann-Smalø 1998).

**Application 2.** Assume *R* is an (Iwanaga–)Gorenstein ring: *R* is noetherian, idim  $R_R$  and idim  $_RR$  are finite.

**Application 2.** Assume *R* is an (Iwanaga–)Gorenstein ring: *R* is noetherian, idim  $R_R$  and idim  $_RR$  are finite.

Then idim  $R_R = idim_R R = Findim R$ ,

**Application 2.** Assume *R* is an (Iwanaga–)Gorenstein ring: *R* is noetherian, idim  $R_R$  and idim  $_RR$  are finite.

Then idim  $R_R = \text{idim}_R R = \text{Findim} R$ , and  $T = I_0 \oplus \ldots \oplus I_n$  where

$$0 \rightarrow R \rightarrow I_0 \rightarrow \ldots \rightarrow I_n \rightarrow 0$$

is a minimal injective coresolution.

**Application 2.** Assume *R* is an (Iwanaga–)Gorenstein ring: *R* is noetherian, idim  $R_R$  and idim  $_RR$  are finite.

Then idim  $R_R = \text{idim}_R R = \text{Findim} R$ , and  $T = I_0 \oplus \ldots \oplus I_n$  where

$$0 \rightarrow R \rightarrow I_0 \rightarrow \ldots \rightarrow I_n \rightarrow 0$$

is a minimal injective coresolution. Thus {modules with finite  $\operatorname{Add} T$ -resolution} =  $\operatorname{Add} T$ . **Application 2.** Assume *R* is an (Iwanaga–)Gorenstein ring: *R* is noetherian, idim  $R_R$  and idim  $_RR$  are finite.

Then idim  $R_R = \text{idim}_R R = \text{Findim}R$ , and  $T = I_0 \oplus \ldots \oplus I_n$  where

$$0 \rightarrow R \rightarrow I_0 \rightarrow \ldots \rightarrow I_n \rightarrow 0$$

is a minimal injective coresolution. Thus {modules with finite  $\operatorname{Add} T$ -resolution} =  $\operatorname{Add} T$ . So FindimR = findim $R < \infty$  (A-Herbera-Trlifaj 2006).

#### Theorem (A-Mendoza 2008).

If R is right noetherian, then for every tilting module T we have

 $Findim R \le pdim T + idim T$
$\mathbb{Q} \oplus \mathbb{Q}/\mathbb{Z}$  is a tilting  $\mathbb{Z}$ -module. Its tilting class is the class of *divisible* groups.

This pattern occurs in many situations !

**Theorem (Schofield)** Let  $\Sigma$  be a set of morphisms between finitely generated projective right *R*-modules. Then there is a ring homomorphism  $\lambda: R \to R_{\Sigma}$  such that

1.  $\lambda$  is  $\Sigma$ -inverting: if  $\alpha \colon P \to Q$  belongs to  $\Sigma$ , then  $\alpha \otimes_R 1_{R_{\Sigma}} \colon P \otimes_R R_{\Sigma} \to Q \otimes_R R_{\Sigma}$  is an isomorphism

2.  $\lambda$  is *universal* with respect to 1.

**Theorem (Schofield)** Let  $\Sigma$  be a set of morphisms between finitely generated projective right *R*-modules. Then there is a ring homomorphism  $\lambda: R \to R_{\Sigma}$  such that

1.  $\lambda$  is  $\Sigma$ -inverting: if  $\alpha \colon P \to Q$  belongs to  $\Sigma$ , then  $\alpha \otimes_R 1_{R_{\Sigma}} \colon P \otimes_R R_{\Sigma} \to Q \otimes_R R_{\Sigma}$  is an isomorphism

2.  $\lambda$  is *universal* with respect to 1.

 $\lambda \colon R \to R_{\Sigma}$  is a ring epimorphism with  $\operatorname{Tor}_{1}^{R}(R_{\Sigma}, R_{\Sigma}) = 0$ , the universal localization of R at  $\Sigma$ .

Let now  $\mathcal{U} \subset \text{mod-}R$  be a set of *R*-modules of pdim 1. For each  $U \in \mathcal{U}$ , fix a projective resolution in mod-*R* 

$$0 \to P \stackrel{\alpha_U}{\to} Q \to U \to 0$$

and set  $\Sigma = \{ \alpha_U \mid U \in \mathcal{U} \}.$ 

 $R_{\mathcal{U}}$  denotes the universal localization of R at  $\Sigma$ .

#### Theorem (A-Sánchez 2007).

Let  $\mathcal{U} \subset \operatorname{mod} R$  be a set of R-modules of pdim 1. If R embeds in  $R_{\mathcal{U}}$  and pdim $R_{\mathcal{U}} \leq 1$ , then

 $R_{\mathcal{U}}\oplus R_{\mathcal{U}}/R$ 

is a tilting module.

#### Application 1: Classification of tilting modules.

Over a *Dedekind domain*, every tilting module is equivalent to a module of the form

 $R_{\mathcal{U}} \oplus R_{\mathcal{U}}/R$ 

where  $\mathcal{U} = \{R/\mathfrak{m} \mid \mathfrak{m} \in \mathfrak{P}\}$  and  $\mathfrak{P}$  is a set of maximal ideals of R (Trlifaj-Wallutis / Bazzoni-Eklof-Trlifaj 2005).

#### Application 1: Classification of tilting modules.

Over a *Dedekind domain*, every tilting module is equivalent to a module of the form

 $R_{\mathcal{U}}\oplus R_{\mathcal{U}}/R$ 

where  $\mathcal{U} = \{R/\mathfrak{m} \mid \mathfrak{m} \in \mathfrak{P}\}$  and  $\mathfrak{P}$  is a set of maximal ideals of R(Trlifaj-Wallutis / Bazzoni-Eklof-Trlifaj 2005).

Similar results also for Prüfer domains, commutative Gorenstein rings, HNP-rings ...

**Application 1: Classification of tilting modules.** Over the *Kronecker-algebra* 

$$\bullet \xrightarrow{\alpha}_{\overrightarrow{\beta}} \bullet$$

every tilting module is equivalent to one of the following:

- 1. a finite dimensional tilting module
- 2. the tilting module L with  $L^{\perp} = \mathcal{L}$
- 3.  $R_{\mathcal{U}} \oplus R_{\mathcal{U}}/R$  where  $\mathcal{U}$  is a set of simple regular modules.

**Application 1: Classification of tilting modules.** Over the *Kronecker-algebra* 

$$\bullet \xrightarrow{\alpha}_{\overrightarrow{\beta}} \bullet$$

every tilting module is equivalent to one of the following:

- 1. a finite dimensional tilting module
- 2. the tilting module L with  $L^{\perp} = \mathcal{L}$
- 3.  $R_{\mathcal{U}} \oplus R_{\mathcal{U}}/R$  where  $\mathcal{U}$  is a set of simple regular modules.

In particular,  $W \sim R_U \oplus R_U/R$  where U is the set of all simple regular modules.

#### Application 2 (A–Herbera–Trlifaj 2005).

Let R be commutative, and let S be a multiplicative subset consisting of non-zero-divisors. Set  $Q = S^{-1}R$ .

#### Application 2 (A-Herbera-Trlifaj 2005).

Let R be commutative, and let S be a multiplicative subset consisting of non-zero-divisors. Set  $Q = S^{-1}R$ . The following are equivalent.

- 1.  $\operatorname{pdim} Q_R \leq 1$ .
- 2. Gen $Q_R$  is the class of S-divisible modules.
- 3. Q/R is a direct sum of countably presented submodules.

#### Application 2 (A-Herbera-Trlifaj 2005).

Let R be commutative, and let S be a multiplicative subset consisting of non-zero-divisors. Set  $Q = S^{-1}R$ . The following are equivalent.

- 1.  $\operatorname{pdim} Q_R \leq 1$ .
- 2. Gen $Q_R$  is the class of S-divisible modules.
- 3. Q/R is a direct sum of countably presented submodules.

(For domains: Hamsher 1971, Matlis 1973, Lee 1989).

Let R be a commutative domain, and Q its quotient field.

The Fuchs' divisible module  $\delta$  is a tilting module of pdim $\delta = 1$ . Its tilting class is the class of all divisible modules. (Facchini 1987)

Let R be a commutative domain, and Q its quotient field.

The Fuchs' divisible module  $\delta$  is a tilting module of pdim $\delta = 1$ . Its tilting class is the class of all divisible modules. (Facchini 1987)

• If  $pdim Q_R \leq 1$ , then  $\delta$  is equivalent to  $Q \oplus Q/R$ .

Let R be a commutative domain, and Q its quotient field.

The Fuchs' divisible module  $\delta$  is a tilting module of pdim $\delta = 1$ . Its tilting class is the class of all *divisible modules*. (Facchini 1987)

- If  $pdim Q_R \leq 1$ , then  $\delta$  is equivalent to  $Q \oplus Q/R$ .
- If  $pdim Q_R > 1$ :

**Question:** Is  $\delta$  related to the localization  $\lambda : R \to Q$ ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From now on, let T be a tilting module of pdim T = 1.

From now on, let T be a tilting module of pdimT = 1. Recall:

(T3) There exists an exact sequence

$$0 \rightarrow R \rightarrow T_0 \rightarrow T_1 \rightarrow 0$$

where  $T_0$ ,  $T_1$  belong to Add T.

From now on, let T be a tilting module of pdimT = 1. Recall:

(T3) There exists an exact sequence

$$0 \rightarrow R \rightarrow T_0 \rightarrow T_1 \rightarrow 0$$

where  $T_0$ ,  $T_1$  belong to Add T.

Consider the perpendicular category

$$\hat{\mathcal{T}}_1 = \{ M \in \operatorname{Mod-} R \mid \operatorname{Hom}_R(\mathcal{T}_1, M) = \operatorname{Ext}^1_R(\mathcal{T}_1, M) = 0 \}$$

There is a ring epimorphism  $\lambda : \mathbb{R} \to S$  which induces an equivalence

 $\lambda_* : \operatorname{Mod} - S \to \hat{T}_1$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Gabriel-de la Peña 1987).

There is a ring epimorphism  $\lambda : \mathbb{R} \to S$  which induces an equivalence

$$\lambda_*: \operatorname{Mod} S \to \hat{T}_1$$

(Gabriel-de la Peña 1987).

**Note:** If  $\operatorname{Hom}_R(T_1, T_0) = 0$ , then  $\lambda$  is

- injective
- a homological epimorphism

**Theorem (Geigle-Lenzing 1991).** The following statements are equivalent for a ring homomorphism  $\lambda : R \to S$ .

- 1.  $\lambda$  is a ring epimorphismus, and  $\operatorname{Tor}_{i}^{R}(S,S) = 0$  for all  $i \geq 1$ .
- 2.  $\operatorname{Ext}^{i}_{R}(M, N) \cong \operatorname{Ext}^{i}_{S}(M, N)$  for all  $M, N \in \operatorname{Mod} S$ ,  $i \ge 1$ .

Then  $\lambda$  is said to be a homological ring epimorphism.

#### Theorem (A-Sánchez 2007). The following are equivalent.

1. There is an exact sequence  $0 \to R \to T_0 \to T_1 \to 0$  with  $T_0, T_1 \in \operatorname{Add} T$  and  $\operatorname{Hom}_R(T_1, T_0) = 0$ .

#### Theorem (A-Sánchez 2007). The following are equivalent.

- 1. There is an exact sequence  $0 \to R \to T_0 \to T_1 \to 0$  with  $T_0, T_1 \in \operatorname{Add} T$  and  $\operatorname{Hom}_R(T_1, T_0) = 0$ .
- 2. There is an injective ring epimorphism  $\lambda: R \to S$  such that  $\operatorname{Tor}_1^R(S,S) = 0$  and

 $S \oplus S/R$ 

is a tilting module equivalent to T.

Let R be a commutative domain, and Q its quotient field.

• If  $pdim Q_R > 1$ , the Fuchs' tilting module  $\delta$  is *not* of the form  $S \oplus S/R$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let R be a commutative domain, and Q its quotient field.

If pdimQ<sub>R</sub> > 1, the Fuchs' tilting module δ is *not* of the form S ⊕ S/R.
Question: Is δ related to the localization λ : R → Q ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let T and  $T_1$  be as above. Consider

 $\mathcal{X} = \text{Tria } T_1$ 

the smallest full triangulated subcategory of  $\mathcal{D}(R)$  which contains  $\mathcal{T}_1$  and is closed under small coproducts,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let T and  $T_1$  be as above. Consider

 $\mathcal{X} = \text{Tria } T_1$ 

the smallest full triangulated subcategory of  $\mathcal{D}(R)$  which contains  $\mathcal{T}_1$  and is closed under small coproducts,

 $\mathcal{Y} = \operatorname{Ker} \operatorname{Hom}_{\mathcal{D}(R)}(\mathcal{X}, -)$ 

Let T and  $T_1$  be as above. Consider

 $\mathcal{X} = \text{Tria } T_1$ 

the smallest full triangulated subcategory of  $\mathcal{D}(R)$  which contains  $T_1$  and is closed under small coproducts,

 $\mathcal{Y} = \operatorname{Ker} \operatorname{Hom}_{\mathcal{D}(R)}(\mathcal{X}, -)$ 

**Note:**  $\mathcal{Y}$  is closed under small coproducts, so  $\mathcal{X}$  is a smashing subcategory of D(R).

Then there is a recollement



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then there is a recollement



that is,

- $(q, \mathrm{inc}_{\mathcal{Y}})$ ,  $(\mathrm{inc}_{\mathcal{Y}}, b)$ ,  $(\mathrm{inc}_{\mathcal{X}}, a)$ , and (a, j) are adjoint pairs
- $b \circ j = 0$
- *j* is a full embedding
- For each  $C \in D(R)$  there are triangles

$$\operatorname{inc}_{\mathcal{Y}} b(C) \to C \to ja(C) \rightsquigarrow$$

$$\operatorname{inc}_{\mathcal{X}} a(C) \to C \to \operatorname{inc}_{\mathcal{Y}} q(C) \rightsquigarrow$$

**Theorem (A–König–Liu 2008).** Every tilting module T of projective dimension one induces a recollement



with the following properties:

- $\mathcal{X} = \text{Tria } T_1$  where  $T_1$  is an exceptional object of  $\mathcal{D}(R)$ .
- $\mathcal{Y} = \text{Tria } T_2$  where  $T_2$  is a self-compact object of  $\mathcal{D}(R)$ .

**Theorem (A–König–Liu 2008).** Every tilting module T of projective dimension one induces a recollement

$$\mathcal{D}(S) \sim \mathcal{Y} \underbrace{\stackrel{\mathrm{inc}}{\longleftarrow}} \mathcal{D}(\mathsf{R}) \underbrace{\stackrel{\mathrm{inc}}{\longleftarrow}} \mathcal{X}$$

with the following properties:

- $\mathcal{X} = \text{Tria } T_1$  where  $T_1$  is an exceptional object of  $\mathcal{D}(R)$ .
- $\mathcal{Y} = \text{Tria } T_2$  where  $T_2$  is a self-compact object of  $\mathcal{D}(R)$ .
- $T_2$  is exceptional  $\Leftrightarrow \lambda$  is a homological epimorphism. In this case  $\lambda_*$  induces an equivalence  $\mathcal{D}(S) \sim \mathcal{Y}$ .

**Theorem (A–König–Liu 2008).** Every tilting module T of projective dimension one induces a recollement

$$\mathcal{D}(S) \sim \mathcal{Y} \xrightarrow{\text{inc}} \mathcal{D}(\mathsf{R}) \xrightarrow{\text{inc}} \mathcal{X} \sim \mathcal{D}(V)$$

with the following properties:

- $\mathcal{X} = \text{Tria } T_1$  where  $T_1$  is an exceptional object of  $\mathcal{D}(R)$ .
- $\mathcal{Y} = \text{Tria } T_2$  where  $T_2$  is a self-compact object of  $\mathcal{D}(R)$ .
- $T_2$  is exceptional  $\Leftrightarrow \lambda$  is a homological epimorphism. In this case  $\lambda_*$  induces an equivalence  $\mathcal{D}(S) \sim \mathcal{Y}$ .
- $T_1$  is self-compact  $\Leftrightarrow$  there are a ring V and an equivalence  $\mathcal{X} \sim \mathcal{D}(V)$  taking  $T_1 \mapsto V_V$ . This occurs iff  $T \in \text{mod-}R$  up to equivalence.

Let R be a commutative domain, and Q its quotient field. The tilting module  $\delta$  always induces a recollement

$$\mathcal{D}(\mathsf{Q})$$
  $\xrightarrow{\mathrm{inc}}$   $\mathcal{D}(\mathsf{R})$   $\xrightarrow{\mathrm{inc}}$   $\mathrm{Tria}\,\delta/R$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## Example 3.

Over the Kronecker-algebra  $\bullet \xrightarrow{\alpha}_{\beta} \bullet$ 

• the tilting module *L* induces the trivial recollement with  $\mathcal{Y} = 0, \ \mathcal{X} = \mathcal{D}(R).$ 

# Example 3.

Over the Kronecker-algebra  $\bullet \xrightarrow{\alpha}_{\beta} \bullet$ 

- the tilting module *L* induces the trivial recollement with  $\mathcal{Y} = 0, \ \mathcal{X} = \mathcal{D}(R).$
- the tilting module  $W \sim R_U \oplus R_U/R$ , where U is the set of all simple regular modules, induces a recollement

$$\mathcal{D}(\mathcal{R}_{\mathcal{U}})$$
  $\xrightarrow{\operatorname{inc}}$   $\mathcal{D}(\mathsf{R})$   $\xrightarrow{\operatorname{inc}}$   $\operatorname{Tria} W_1$ 

where  $R_{\mathcal{U}} \cong F^{d \times d}$  is a simple artinian ring.
## Example 5.

Over the quasi-hereditary algebra  $R = \begin{bmatrix} 1 & 2 \\ 2 & \oplus & 13 \\ 1 & 2 \end{bmatrix} \oplus \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 

the characteristic tilting module

$$egin{array}{ccccc} 1&2\2\oplus&13&\oplus&3\1&2 \end{array}$$

induces a recollement

$$\mathcal{Y}$$
  $\xrightarrow{\mathrm{inc}}$   $\mathcal{D}(\mathsf{R})$   $\xrightarrow{\mathrm{inc}}$   $\mathcal{D}(\mathsf{k})$ 

where  $\lambda : R \to R_{\mathcal{U}}$ , the universal localization at  $\mathcal{U} = \{ \begin{array}{c} 2 \\ 1 \end{array} \}$ , is *not* a homological epimorphism.

## Example 5.

We choose the exact sequence

$$0 \to R \to T_0 \to T_1 \to 0$$

with

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ