Hot Topics in
 Algorithmic Game Theory

Nicole Immorlica

Northwestern University and CWI
Chicago, USA, and Amsterdam, Holland

Course Outline

- Day One (today)
- Introduction to normal form games
- Equilibria notions and computability
- Repeated games
- Day Two - Auction Theory
- Day Three - Social Networks

Let's Play a Game

The Median Game

- Guess an integer between 1 and 100
- Write your name and number on the card and pass it to the front
- The winner is person whose number is closest to 2/3rds of the median
- P R | Z E : this box of chocolate

The Median Game

Example: If the numbers are

Median is 45, and Ali wins because his guess is closest to $2 / 3$ of the median, or 30 .

The Median Game

Outline

- Definitions
- Normal form games
- Bi-matrix games
- Equilibria notions
- Dominant strategy equilibria
- Pure Nash equilibria
- Mixed Nash equilibria
- Approximate Nash equilibria
- Repeated games

Normal Form Games

- A game consists of a set of players $\{1, \ldots, \mathrm{n}\}$, each with a set of strategies S_{1}, \ldots, S_{n}
- The strategy space S of the game is the set of vectors or strategy profiles $S_{1} \times \ldots \times S_{n}$
- For any profile of strategies $s \in S$ and any player i , there is a payoff $\rho_{\mathrm{i}}(\mathbf{s})$

Normal Form Games

Example: The Median Game

- Players: you
- Strategies: integers between 1 and 100
- Payoff: payoff to player i given profile s is a box of chocolates if s_{i} is closest to two-thirds of the median of the numbers in s and zero otherwise.

Bi-Matrix Games

- Two players, Row and Column
- Row has m strategies
- Column has n strategies
- Payoffs represented an (mxn) matrix A whose entries are pairs of numbers (x, y)
- Entry $A_{i j}=(x, y)$ means that when Row plays i and Column plays j, the payoff to Row is x and the payoff to Column is y

Bi-Matrix Games

Example: Prisoners' Dilemma

Outline

- Definitions
- Normal form games
- Bi-matrix games
- Equilibria notions
- Dominant strategy equilibria
- Pure Nash equilibria
- Mixed Nash equilibria
- Approximate Nash equilibria
- Repeated games

Game Theory

Given a game, can we predict which strategies the players will play?

Predicting Game Play

- Example: Prisoners' Dilemma

Predicting Game Play

- In Prisoner's Dilemma, the best strategy of a player is to confess no matter what the other player does
- This is called a dominant strategy equilibrium
- Dominant strategy equilibria are very predictive, but often don't exist

Predicting Game Play

Example: The Median Game

- No dominant strategy equilibrium
- But,
- consider a player i whose number $s_{i} \neq(2 / 3) \times$ median(s)
- then i should change s_{i} to equal $2 / 3$ of the median
- hence the only stable strategy profile is when everyone guesses $2 / 3$ of the median
- this can only happen when everyone guesses zero, and so the vector of all-zeros is the only stable strategy profile

Pure Nash Equilibria

This is called a pure Nash equilibrium.

- A profile is a pure Nash equilibrium if each player's strategy is his or her best choice given the other players' strategies:

$$
\rho_{\mathrm{i}}\left(\left(\mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathrm{i}}, \ldots, \mathbf{S}_{\mathrm{n}}\right)\right) \geq \rho_{\mathrm{i}}\left(\left(\mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathrm{i}}^{\prime}, \ldots, \mathbf{S}_{\mathrm{n}}\right)\right)
$$

for all i and s_{i}.

Equilibria

- Equilibria attempt to determine which strategy profiles will be played
- A good equilibrium notion should
- Always exist
- Be natural
- Be computable
- Is dominant strategy a good equilibrium notion? Is pure Nash equilibria a good notion?

Equilibria Notions

Pure Nash Equilibria

- Exist? Not necessarily.
- Example: Matching pennies game

	Heads	Tails
Heads	$(1,-1)$	$(-1,1)$
Tails	$(-1,1)$	$(1,-1)$

Pure Nash Equilibria

Pure Nash Equilibria

- Natural? Yes, but multiple equilibria.
- Example: Coordination game

Pure Nash Equilibria

- Computable?
- Depends on game representation.
- Bi-matrix games, can just check all entries.
- In general, can be NP-hard to decide if one exists.
- If one exists, finding it can be PLS-complete [FPT '03]

Equilibria Notions

Mixed Nash Equilibria

- Recall Matching Pennies game
- Let players chose strategies probabilisitically

Mixed Nash Equilibria

	$1 / 2$ Heads	$1 / 2$				
Tails			$	$	$1 / 2$ Heads	$(1,-1)$
:---:	:---:					
$1 / 2$ Tails	$(-1,1)$					
	$(-1,1)$					
	$(1,-1)$					

Expected Payoff: $(1 / 4)(1+-1+-1+1)=0$

Mixed Nash Equilibria

- This is the maximum payoff Row can acheive fixing the strategy of Column

$\mathrm{E}\left[\rho_{\text {Row }}\right]=(1 / 2) \mathrm{p}-(1 / 2)(1-\mathrm{p})-(1 / 2)(\mathrm{p})+(1 / 2)(1-\mathrm{p})=0$

Mixed Nash Equilibria

This is called a mixed Nash equilibrium.

- We enhance the strategy set S of a player to include probability distributions over pure strategies
- A mixed strategy σ_{i} is thus

$$
\sigma_{\mathrm{i}}: \mathrm{S}_{\mathrm{i}} \rightarrow[0,1] \text { such that } \sum_{\mathrm{s} \in \mathrm{si}_{\mathrm{i}}} \sigma_{\mathrm{i}}(\mathrm{~s})=1
$$

- And a mixed strategy profile $\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right)$

Mixed Nash Equilibria

This is called a mixed Nash equilibrium.

- A profile (of mixed strategies) is a mixed Nash equilibrium if:

$$
\mathrm{E}\left[\rho_{\mathrm{i}}\left(\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathrm{i}}, \ldots, \mathbf{s}_{\mathrm{n}}\right)\right)\right] \geq \mathrm{E}\left[\rho_{\mathrm{i}}\left(\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{i}^{\prime}, \ldots, \mathbf{s}_{\mathrm{n}}\right)\right)\right]
$$

for all i and (mixed) σ_{i}^{\prime}, where s_{i} are random vars independently distributed according to σ_{i}.

Mixed Nash Equilibria

- Exist? Yes, every game has a mixed NE.
- John Nash proved that NE exist in all finite games with finite strategy stets in 1950.
- Von Neumann remarked "That's trivial, you know. That's just a fixed point theorem."

Mixed Nash Equilibria

- Proof:
- Consider simplex S of mixed strategy profiles
- Let F : $S \rightarrow$ S be the map which shifts profile in direction of best-response:
$\mathrm{F}\left(\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right)=\left(\sigma_{1}+\delta_{1}, \ldots, \sigma_{\mathrm{n}}+\delta_{\mathrm{n}}\right)$ where δ_{i} is small shift in direction of best response of i to σ
- By Brouwer's fixed point theorem, there is a σ^{*} such that $\sigma^{*}=\mathrm{F}\left(\sigma^{*}\right)$
- σ^{*} is a mixed NE since no one wants to deviate

Mixed Nash Equilibria

- Fixed point theorem - Sperner's Lemma (interpretation: color of node = gradient of F)

Mixed Nash Equilibria

Computable?

- Exponential-time algorithm for bi-matrix games
- PPAD-hard in general

Mixed Nash Equilibria

Bi-matrix games

- Let T_{1} be the support of player 1's mixed strategy, p_{i} for $i \in T_{1}$ be probability 1 assigns to i
- Let T_{2} be the support of player 2's mixed strategy, q_{i} for $i \in T_{2}$ be probability 2 assigns to i
- Let u be payoff of player 1 and v be payoff of player 2

Mixed Nash Equilibria

- Lemma: Each pure strategy in the support of a mixed NE must be a best-response to opponent's strategy.
- Proof: Suppose strategy i is not a bestresponse. Then shifting probability mass away from i improves payoff, contradiction assumption that profile was mixed NE.

Mixed Nash Equilibria

We have the following conditions

- p, q are valid probability distributions:

$$
\begin{aligned}
& \sum_{i \in T 1} p_{i}=1, p_{i}>0 \\
& \sum_{i \in T 2} q_{i}=1, q_{i}>0
\end{aligned}
$$

Mixed Nash Equilibria

We have the following conditions

- T_{1} and T_{2} are the support

$$
p_{i}=0 \text { for } i \text { not in } T_{1} \text { and } q_{i}=0 \text { for i not in } T_{2}
$$

Mixed Nash Equilibria

We have the following conditions

- Each $i \in T_{1}$ is a best-response to q (and viceversa)

$$
\begin{aligned}
& \sum_{j \in T_{2}} \mathrm{q}_{\mathrm{j}} \mathrm{~A}_{\mathrm{ij}}(1)=\mathrm{u} \text { for all } \mathrm{i} \in \mathrm{~T}_{1} \\
& \sum_{\mathrm{j} \in \mathrm{~T} 1} \mathrm{p}_{\mathrm{j}} \mathrm{~A}_{\mathrm{ij}}(2)=\mathrm{v} \text { for all } \mathrm{i} \in \mathrm{~T}_{2}
\end{aligned}
$$

Mixed Nash Equilibria

Summarizing,

$$
\begin{gathered}
\sum_{i \in T 1} p_{i}=1, p_{i}>0 \\
\sum_{i \in T} q_{i}=1, q_{i}>0 \\
p_{i}=0 \text { for } i \text { not in } T_{1} \\
q_{i}=0 \text { for } i \text { not in } T_{2} \\
\sum_{j \in T} q_{2} \mathrm{q}_{\mathrm{A}}(1)=u \text { for all } i \in T_{1} \\
\sum_{j \in T 1} \mathrm{p}_{\mathrm{j}} \mathrm{~A}_{\mathrm{ij}}(2)=\mathrm{v} \text { for all } \mathrm{i} \in \mathrm{~T}_{2}
\end{gathered}
$$

$2(n+1)+\left|T_{1}\right|+\left|T_{2}\right|$ equations, $2(n+1)$ unknowns.

Mixed Nash Equilibria

Computability

- Bi-matrix games: for all $2^{n} \times 2^{n}$ possible supports T_{1} and T_{2}, check whether the system of linear equations has a solution such that u and v are best-response payoffs
- General games: Lemke-Howson, pivot-based algorithm similar to simplex algorithm for linear programming, also exponentional

Mixed Nash Equilibria

Computability

- Polytime algorithm?
- No! Nash equilibria are PPAD-complete, even for bi-matrix games [DGP'06, CDT'06]

Equilibria Notions

Approximate Nash Equilibria

- Mixed NE is a set of probability distributions s.t.

$$
\mathrm{E}\left[\rho_{\mathrm{i}}\left(\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathrm{i}}, \ldots, \mathbf{s}_{\mathrm{n}}\right)\right)\right] \geq \mathrm{E}\left[\rho_{\mathrm{i}}\left(\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathrm{i}}^{\prime}, \ldots, \mathbf{s}_{\mathrm{n}}\right)\right)\right]
$$

■ Approximate NE $(\epsilon$-NE) allows additive error
$\mathrm{E}\left[\rho_{\mathrm{i}}\left(\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}}, \ldots, \mathrm{s}_{\mathrm{n}}\right)\right)\right] \geq \mathrm{E}\left[\rho_{\mathrm{i}}\left(\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}}^{\prime}, \ldots, \mathrm{s}_{\mathrm{n}}\right)\right)\right]-\epsilon$
(normalization: payoffs are all in $[0,1]$)

Approximate Nash Equilibria

- Computability in bi-matrix games
$\downarrow \begin{aligned} & \text { Column picks a } \\ & \text { best response }\end{aligned}$

Row picks an arbitrary row

Row picks a best 1/2 response to Column's choice

Approximate Nash Equilibria

- Theorem: The above algorithm yields a (1/2)approximate NE.
- Proof: Each player is playing a best response to opponent's strategy realization with probability (1/2). Hence deviations only improve payoff half the time, and since maximum payoff is 1 , the result follows.

Approximate Nash Equilibria

- Theorem [FNS'07]: For $\epsilon<1 / 2$, need strategies of support $\Omega(\log \mathrm{n})$.
- Theorem [DMP'07, BBM'07, ST'07]: There exist algorithms for $\epsilon \approx 1 / 3$.
- Critique: Approximate NE is not natural for large epsilon. Really, we want a PTAS.

Approximate Nash Equilibria

A sub-exponential time algorithm for all $\epsilon>0$ Lipton, Markakis, Mehta 2003

- Definition: A k-uniform strategy is a mixed strategy where all probabilities are integer multiples of ($1 / k$)

$$
\text { e.g., } \sigma_{1}=(1 / k, 10 / k, 3 / k, \ldots, 5 / k)
$$

Approximate Nash Equilibria

A sub-exponential time algorithm for all $\epsilon>0$

- Key Lemma: For any $\epsilon \in(0,1]$ and for every k $>\mathrm{O}\left(\log \mathrm{n} / \epsilon^{2}\right)$, there exists a pair of k uniform strategies that form an ϵ-NE.
- Result: An algorithm for ϵ-NE that runs in time $\mathrm{n}^{2 \mathrm{k}}$, sub-exponentional in n .
- Simply check all $n^{2 k}$ possibilities for the k-uniform strategies and verify whether they are ϵ-NE

Approximate Nash Equilibria

- Proof Sketch (of Key Lemma): Based on probabilistic method
- Let $\mathrm{p}^{*}, \mathrm{q}^{*}$ be a NE
- Sample k times from strategies of Row according to p^{*} to get k-uniform strategy p :

If strategy i sampled m times, assign it probability m / k.

- Same for Column to get k-uniform strategy q

Approximate Nash Equilibria

- Proof Sketch (of Key Lemma): Based on probabilistic method
- Show that $\operatorname{Pr}[p, q$ are an ϵ-NE] >0 (by ChernoffHoeffding bounds)

Approximate Nash Equilibria

Open Question:

Polynomial-time approximation scheme

Equilibria Notions

Break

Please return in 15 minutes.

Median Game

- Guesses:

$$
\begin{gathered}
1,1,1,2,13,15,20,20,22,27 \\
30,30,32,34,34,37,46,49
\end{gathered}
$$

Median $=24.5$
$(2 / 3)$ of Median = 16. $x x$ Winner = Eaman

Outline

- Definitions
- Normal form games
- Bi-matrix games
- Equilibria notions
- Dominant strategy equilibria
- Pure Nash equilibria
- Mixed Nash equilibria
- Approximate Nash equilibria
- Repeated games

Repeated Games

- Recall Prisoner's Dilemma
- Unique NE, both Confess Deny Confess

Repeated Games

- Suppose Prisoner’s Dilemma is played every day
- Row and Column can agree to both Deny
- If either ever plays Confess, opponent will punish by playing Confess for rest of time
- Threat of lower payoff in future encourages optimal play

Repeated Games

- There is an underlying game with actions A_{i}
- In each stage t, each player plays an action a_{i}^{t} from A_{i} and gets payoff $u_{i}\left(a^{t}\right)$
- The history $h^{t}=\left(a^{1}, \ldots, a^{t}\right) \in(A)^{t}$ describes the game play in the first t stages
- Let h denote the infinite game play

Repeated Games

- A pure strategy is now a function mapping any history of play to the next action

$$
\mathrm{s}_{\mathrm{i}}: \mathrm{A}^{*} \rightarrow \mathrm{~A}_{\mathrm{i}}
$$

where $A^{*}=\cup_{t}(A)^{t}$ is all possible histories

- A mixed strategy σ_{i} is a function mapping any history into a probability distribution over actions

Repeated Games

- Discount factor δ describes tradeoff between present and future payoff
- Mixed strategies induce probability distributions over histories
- The total payoff to a player is expected discounted stage payoffs

$$
\mathrm{E}\left[\rho_{i}(\mathrm{~h})\right]=\delta \sum_{\mathrm{t}}(1-\delta)^{\mathrm{t}} \mathrm{E}\left[\mathrm{u}_{\mathrm{i}}\left(\mathrm{a}^{\mathrm{t}}\right)\right]
$$

where the expectation is over histories

Repeated Games

- A Nash equilibrium is a mixed strategy profile such that no player can deviate and improve his or her payoff

Repeated Games

- Example: Prisoner's Dilemma
- Consider strategies $\sigma_{1}=\sigma_{2}$

$$
\begin{gathered}
\sigma_{1}(\text { Deny })^{*}=\text { Deny } \\
\sigma_{1}(\mathrm{~h})=\text { Confess for any other } \mathrm{h}
\end{gathered}
$$

- Then the realized history will be Deny*
- Payoff will be -2 for each player
- Consider deviation in which Row plays Confess at stage T+1

Repeated Games

Then the payoff to Row is

$$
\begin{aligned}
\delta & {\left[\sum_{t=1}^{\top}(-2)(1-\delta)^{\mathrm{t}}+(-1)(1-\delta)^{\mathrm{T}+1}+\sum_{\mathrm{t}>\mathrm{T}+1}(-4)(1-\delta)^{\mathrm{t}}\right] } \\
& =\delta \sum_{\mathrm{t}}(-2)(1-\delta)^{\mathrm{t}}+\delta(1-\delta)^{\mathrm{T}+1}+\delta \sum_{\mathrm{t}>++1}(-2)(1-\delta)^{\mathrm{t}} \\
& =-2+\delta(1-\delta)^{\mathrm{T}+1}-2(1-\delta)^{\mathrm{T}+2} \\
& <-2
\end{aligned}
$$

whenever $\delta(1-\delta)^{\top+1}-2(1-\delta)^{\top+2}<0$ or $\delta<2 / 3$

Repeated Games

- Hence, strategies $\sigma_{1}=\sigma_{2}$

$$
\begin{gathered}
\left.\sigma_{1}(\text { Deny })^{*}\right)=\text { Deny } \\
\sigma_{1}(\mathrm{~h})=\text { Confess for any other } \mathrm{h}
\end{gathered}
$$

are a Nash equilibrium for small enough δ

Repeated Games

- Folk Theorem: Consider the achievable payoffs of the stage game.

Repeated Games

- Folk Theorem: Compute min-max payoffs for each player (the best payoff a player can guarantee him or herself) - the Threat Point.

$(3,3)$	$(0,4)$
$(4,0)$	$(1,1)$

Repeated Games

- Folk Theorem: Individually rational region is set of payoffs above the Threat Point.

Repeated Games

- Folk Theorem: Any payoff in the individually rational region is acheivable in a Nash equilibrium.

Repeated Games

- Folk Theorem: Pick program of play that acheives chosen payoffs. If a player deviates, switch to Threat Point. This is a NE.

Repeated Games

- Problem! Threat Point may be NP-hard to compute.
- We reduce the problem of computing the Threat Point to 3-coloring.

Repeated Games

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be graph we wish to 3-color
- There are three players 1, 2, and 3
- Show computing minmax payoff of 3 is hard

Repeated Games

- Stragies of 1 and 2: pick a node and a color

$$
S_{1}=S_{2}=V \times\{\text { Red, Green, Blue }\}
$$

- Strategy of 3: pick a player and a node

$$
S_{3}=\{1,2\} \times V
$$

Repeated Games

- Let $\left(\mathrm{v}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{v}_{2}, \mathrm{C}_{2}\right),\left(\mathrm{i}, \mathrm{v}_{3}\right)$ be strategy profile
- Payoff to 3 is
- 1 if $v_{1}=v_{2}$ and $c_{1} \neq c_{2}$

1 and 2 are exposed

- 1 if $\left(v_{1}, v_{2}\right) \in E$ and $\left.c_{1}=c_{2}\right\}$
- 1 if $v_{3}=v_{i}$
$\longleftarrow 3$ found i
- 0 otherwise

Repeated Games

If G is 3 -colorable, then min-max payoff of 3 is $1 / n$

Players 1 and 2 pick uniformly random strategies consistent with 3coloring c

Repeated Games

If G is 3 -colorable, min-max payoff of 3 is $1 / \mathrm{n}$:

- Player 3 gets payoff of 1 only by guessing the node of a player. Happens with probability $1 / n$.
- This is min that 1 and 2 can force upon 3 since there must be some node selected with probability at least $1 / n$

Repeated Games

If G is not 3 -colorable, min-max payoff of 3 is at least $1 / n+1 /\left(3 n^{2}\right)$

- Consider any mixed strategies σ_{1}, σ_{2}
- Case 1:
\square For some $i \in\{1,2\}$ and $v \in V$, i chooses v with probability at least $1 / n+1 /\left(3 n^{2}\right)$
- Then 3 plays ($\mathrm{i}, \mathrm{v}_{\mathrm{i}}$)

Repeated Games

- Case 2:
a For all $i \in\{1,2\}$ and $v \in V$, i chooses v with probability at most $1 / n+1 /\left(3 n^{2}\right)$
- Then 3 plays ($\mathrm{i}, \mathrm{v}_{3}$) for a random i and v_{3}
- With probability $1 / n, v_{3}=v_{i}$ and 3 gets 1
- We show 1 and 2 are exposed with prob. $>4 /\left(9 n^{2}\right)$
- This implies payoff of 3 is at least

$$
(1 / n)+(1-1 / n)\left(4 / 9 n^{2}\right) \geq 1 / n+1 /\left(3 n^{2}\right)
$$

Repeated Games

- Case 2:
- For all $i \in\{1,2\}$ and $v \in V$, i chooses v with probability at most $1 / n+1 /\left(3 n^{2}\right)$
$\rightarrow i$ chooses node v with probability at least $2 /(3 n)$

Repeated Games

- Case 2:
- Let E be event 1 and 2 are exposed

$$
\begin{aligned}
& \operatorname{Pr}[E]=\sum_{x, y \in v} \operatorname{Pr}\left[v_{1}=x\right] \operatorname{Pr}\left[v_{2}=y\right] \operatorname{Pr}\left[E \mid v_{1}=x, v_{2}=y\right] \\
& \quad \geq 4 /\left(9 n^{2}\right) \sum_{x, y \in v} \operatorname{Pr}\left[E \mid v_{1}=x, v_{2}=y\right]
\end{aligned}
$$

- But sum is expected number of inconsistencies in random colorings induced by mixed strategies.
- This is at least 1 by probabilistic method.

Repeated Games

Theorem [BCIKMP'08]: Given a 3-player n x $\mathrm{n} \times \mathrm{n}$ game with payoffs in $\{0,1\}$ it is NP-hard to approximate the min-max payoff for each of the players to within $1 /\left(3 n^{2}\right)$.

Repeated Games

- What about other algorithms for ϵ-NE?
- Theorem [BCIKMP'08]: Finding an ϵ-NE of a k-player repeated game is as hard as finding an ϵ-NE of a (k-1)-player single-shot game.
- Proof Sketch:
- Take (k-1)-player game G
- Construct repeated Kibitzer version (next slide)
- Extract equilibrium from Kibitzer version

Repeated Games

Kibitzer version of G
Player $2 \downarrow$

Payoffs: $\rho_{1}=-7, \rho_{2}=0, \rho_{\text {kibitizer }}=7$

Repeated Games

- Consider an ϵ-NE of the repeated Kibitzer version of a game G.
- If players are not playing an ϵ-NE of G , then Kibitzer has a response that improves payoff by more than ϵ.

Repeated Games

Open Question:
Complexity in specific game classes

Next Time

Auction Theory

