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Course Outline

� Day One (today)
� Introduction to normal form games

� Equilibria notions and computability
� Repeated games

� Day Two – Auction Theory

� Day Three – Social Networks



Let’s Play a Game

The Median Game

� Guess an integer between 1 and 100
� Write your name and number on the card and 

pass it to the front
� The winner is person whose number is closest to 

2/3rds of the median

� P R I Z E : this box of chocolate



The Median Game

Example: If the numbers are

Median is 45, and Ali wins because his guess 
is closest to 2/3 of the median, or 30.

Ali Payman Leila Reza Maryam

25 45 0 50 69



The Median Game
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� Repeated games



Normal Form Games 

� A game consists of a set of players {1, ..., n}, 
each with a set of strategies S1, ..., Sn

� The strategy space S of the game is the set 
of vectors or strategy profiles S1 x ... x Sn

� For any profile of strategies s ∈ S and any 
player i, there is a payoff ρi(s)



Normal Form Games

Example: The Median Game
� Players: you

� Strategies: integers between 1 and 100
� Payoff: payoff to player i given profile s is a 

box of chocolates if si is closest to two-thirds 
of the median of the numbers in s and zero 
otherwise.



Bi-Matrix Games

� Two players, Row and Column
� Row has m strategies

� Column has n strategies
� Payoffs represented an (m x n) matrix A 

whose entries are pairs of numbers (x, y)
� Entry Aij = (x, y) means that when Row plays i 

and Column plays j, the payoff to Row is x 
and the payoff to Column is y



Bi-Matrix Games

Example: Prisoners’ Dilemma

(-2, -2) (-5, -1)

(-1, -5) (-4, -4)

Deny Confess

Confess

Deny
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Game Theory

Given a game, can we predict 
which strategies the players will play?



Predicting Game Play

� Example: Prisoners’ Dilemma

(-2, -2) (-5, -1)

(-1, -5) (-4, -4)

Deny Confess

Confess

Deny



Predicting Game Play

� In Prisoner’s Dilemma, the best strategy of a 
player is to confess no matter what the other 
player does

� This is called a dominant strategy equilibrium

� Dominant strategy equilibria are very 
predictive, but often don’t exist



Predicting Game Play

Example: The Median Game

� No dominant strategy equilibrium
� But, 

� consider a player i whose number si ≠ (2/3) x median(s)
� then i should change si to equal 2/3 of the median
� hence the only stable strategy profile is when everyone 

guesses 2/3 of the median
� this can only happen when everyone guesses zero, and so 

the vector of all-zeros is the only stable strategy profile



Pure Nash Equilibria

This is called a pure Nash equilibrium.
� A profile is a pure Nash equilibrium if each 

player’s strategy is his or her best choice 
given the other players’ strategies:

ρi((s1,..., si, ..., sn))≥ ρi((s1, ..., s’i, ..., sn))

for all i and s’i.



Equilibria

� Equilibria attempt to determine which strategy 
profiles will be played

� A good equilibrium notion should
� Always exist
� Be natural
� Be computable

� Is dominant strategy a good equilibrium 
notion?  Is pure Nash equilibria a good 
notion?



Equilibria Notions

Computable

Existence

Nat
ur

al
Pure NE

Approx NE

Mixed NE

Dom. 
Strat.

Goal



Pure Nash Equilibria

� Exist? Not necessarily.
� Example: Matching pennies game

(1, -1) (-1, 1)

(-1, 1) (1, -1)

Heads Tails

Tails

Heads



Pure Nash Equilibria

Heads, Heads Heads, Tails

Tails, TailsTails, Heads

C 
switches 
to Tails

C 
switches 
to Heads

C stays 
Heads

C stays 
Tails

R stays 
Tails

R stays 
Heads

R 
switches 
to Tails

R 
switches 
to Heads



Pure Nash Equilibria

� Natural? Yes, but multiple equilibria.
� Example: Coordination game

(5, 4) (2, 1)

(1, 2) (4, 5)

Theater Football

Football

Theater



Pure Nash Equilibria

� Computable?
� Depends on game representation.

� Bi-matrix games, can just check all entries.
� In general, can be NP-hard to decide if one exists.
� If one exists, finding it can be PLS-complete [FPT 

’03]



Equilibria Notions

Computable

Existence
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Pure 
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Mixed Nash Equilibria

� Recall Matching Pennies game
� Let players chose strategies probabilisitically

(1, -1) (-1, 1)

(-1, 1) (1, -1)

Heads Tails

Tails

Heads



Mixed Nash Equilibria

(1, -1) (-1, 1)

(-1, 1) (1, -1)

Heads Tails

Tails

Heads1/2

1/2

1/2 1/2

Expected Payoff: (1/4) (1 + -1 + -1 + 1) = 0



Mixed Nash Equilibria

� This is the maximum payoff Row can acheive 
fixing the strategy of Column

E[ρRow] = (1/2)p – (1/2)(1-p) – (1/2)(p) + (1/2)(1-p) = 0

(1, -1) (-1, 1)

(-1, 1) (1, -1)

p

1-p

1/2 1/2



Mixed Nash Equilibria

This is called a mixed Nash equilibrium.
� We enhance the strategy set S of a player to 

include probability distributions over pure 
strategies

� A mixed strategy σi is thus

σi : Si → [0,1] such that ∑s∈ Siσi(s) = 1

� And a mixed strategy profile σ = (σ1, ..., σn)



Mixed Nash Equilibria

This is called a mixed Nash equilibrium.
� A profile (of mixed strategies) is a mixed 

Nash equilibrium if:

E[ρi((s1,..., si, ..., sn))] ≥ E[ρi((s1, ..., s’i, ..., sn))]

for all i and (mixed) σ’i, where si are random 
vars independently distributed according to 
σi.



Mixed Nash Equilibria

� Exist? Yes, every game has a mixed NE.
� John Nash proved that NE exist in all finite 

games with finite strategy stets in 1950.

� Von Neumann remarked ``That’s trivial, you 
know.  That’s just a fixed point theorem.’’



Mixed Nash Equilibria

� Proof:
� Consider simplex S of mixed strategy profiles
� Let F : S → S be the map which shifts profile in 

direction of best-response:
F(σ1,...,σn) = (σ1+δ1, ...,σn + δn) where δi is small 
shift in direction of best response of i to σ

� By Brouwer’s fixed point theorem, there is a σ*

such that σ* = F(σ*)
� σ* is a mixed NE since no one wants to deviate



Mixed Nash Equilibria

� Fixed point theorem – Sperner’s Lemma
(interpretation: color of node = gradient of F)



Mixed Nash Equilibria

Computable?
� Exponential-time algorithm for bi-matrix 

games

� PPAD-hard in general



Mixed Nash Equilibria

Bi-matrix games
� Let T1 be the support of player 1’s mixed 

strategy, pi for i ∈ T1 be probability 1 assigns 
to i

� Let T2 be the support of player 2’s mixed 
strategy, qi for i ∈ T2 be probability 2 assigns 
to i

� Let u be payoff of player 1 and v be payoff of 
player 2



Mixed Nash Equilibria

� Lemma: Each pure strategy in the support of 
a mixed NE must be a best-response to 
opponent’s strategy.

� Proof: Suppose strategy i is not a best-
response.  Then shifting probability mass 
away from i improves payoff, contradiction 
assumption that profile was mixed NE.



Mixed Nash Equilibria

We have the following conditions
� p, q are valid probability distributions: 

∑i∈T1pi = 1, pi > 0
∑i∈ T2qi = 1, qi > 0



Mixed Nash Equilibria

We have the following conditions
� T1 and T2 are the support

pi = 0 for i not in T1 and qi = 0 for i not in T2



Mixed Nash Equilibria

We have the following conditions
� Each i ∈ T1 is a best-response to q (and vice-

versa)

∑j ∈ T2qjAij(1) = u for all i ∈ T1

∑j ∈ T1pjAij(2) = v for all i ∈ T2



Mixed Nash Equilibria

Summarizing,
∑i∈T1pi = 1, pi > 0

∑i∈ T2qi = 1, qi > 0
pi = 0 for i not in T1

qi = 0 for i not in T2

∑j ∈ T2qjAij(1) = u for all i ∈ T1

∑j ∈ T1pjAij(2) = v for all i ∈ T2

2(n+1)+|T1|+|T2| equations, 2(n+1) unknowns.



Mixed Nash Equilibria

Computability
� Bi-matrix games: for all 2n x 2n possible 

supports T1 and T2, check whether the 
system of linear equations has a solution 
such that u and v are best-response payoffs

� General games: Lemke-Howson, pivot-based 
algorithm similar to simplex algorithm for 
linear programming, also exponentional



Mixed Nash Equilibria

Computability
� Polytime algorithm?

� No!  Nash equilibria are PPAD-complete, 
even for bi-matrix games [DGP’06, CDT’06]



Equilibria Notions
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Approximate Nash Equilibria

� Mixed NE is a set of probability distributions 
s.t. 

E[ρi((s1,..., si, ..., sn))] ≥ E[ρi((s1, ..., s’i, ..., sn))]

� Approximate NE (ǫ-NE) allows additive error

E[ρi((s1,..., si, ..., sn))] ≥ E[ρi((s1, ..., s’i, ..., sn))]   – ǫ

(normalization: payoffs are all in [0,1])



Approximate Nash Equilibria

� Computability in bi-matrix games

Row picks 
an arbitrary 
row

Column  picks a 
best response

Row picks a best 
response to 
Column’s choice

1/2

1/2



Approximate Nash Equilibria

� Theorem: The above algorithm yields a (1/2)-
approximate NE.

� Proof: Each player is playing a best response 
to opponent’s strategy realization with 
probability (1/2).  Hence deviations only 
improve payoff half the time, and since 
maximum payoff is 1, the result follows.



Approximate Nash Equilibria

� Theorem [FNS’07]: For ǫ<1/2, need 
strategies of support Ω(log n).

� Theorem [DMP’07, BBM’07, ST’07]: There 
exist algorithms for ǫ ≈ 1/3.

� Critique: Approximate NE is not natural for 
large epsilon.  Really, we want a PTAS.



Approximate Nash Equilibria

A sub-exponential time algorithm for all ǫ > 0

Lipton, Markakis, Mehta 2003

� Definition: A k-uniform strategy is a mixed 
strategy where all probabilities are integer 
multiples of (1/k)

e.g., σ1 = (1/k, 10/k, 3/k, ..., 5/k)



Approximate Nash Equilibria

A sub-exponential time algorithm for all ǫ > 0
� Key Lemma: For any ǫ ∈ (0,1] and for every k 

> O( log n / ǫ2), there exists a pair of k-
uniform strategies that form an ǫ-NE.

� Result: An algorithm for ǫ-NE that runs in 
time n2k, sub-exponentional in n.
� Simply check all n2k possibilities for the k-uniform 

strategies and verify whether they are ǫ-NE 



Approximate Nash Equilibria

� Proof Sketch (of Key Lemma): Based on 
probabilistic method
� Let p*, q* be a NE

� Sample k times from strategies of Row according 
to p* to get k-uniform strategy p:

If strategy i sampled m times, assign it probability 
m/k.

� Same for Column to get k-uniform strategy q



Approximate Nash Equilibria

� Proof Sketch (of Key Lemma): Based on 
probabilistic method

� Show that Pr[p,q are an ǫ-NE] > 0 (by Chernoff-
Hoeffding bounds)



Approximate Nash Equilibria

Open Question: 
Polynomial-time approximation scheme



Equilibria Notions
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Break

Please return in 15 minutes.



Median Game

� Guesses:

1, 1, 1, 2, 13, 15, 20, 20, 22, 27, 
30, 30, 32, 34, 34, 37, 46, 49

Median = 24.5
(2/3) of Median = 16.xx

Winner = Eaman
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Repeated Games

� Recall Prisoner’s Dilemma
� Unique NE, both Confess

(-2, -2) (-5, -1)

(-1, -5) (-4, -4)

Deny Confess

Confess

Deny



Repeated Games

� Suppose Prisoner’s Dilemma is played every 
day

� Row and Column can agree to both Deny

� If either ever plays Confess, opponent will 
punish by playing Confess for rest of time

� Threat of lower payoff in future encourages 
optimal play



Repeated Games

� There is an underlying game with actions Ai

� In each stage t, each player plays an action 
at

i from Ai and gets payoff ui(at)
� The history ht = (a1, ..., at) ∈ (A)t describes 

the game play in the first t stages
� Let h denote the infinite game play



Repeated Games

� A pure strategy is now a function mapping 
any history of play to the next action

si : A* → Ai

where A* = ∪t (A)t is all possible histories

� A mixed strategy σi is a function mapping any 
history into a probability distribution over 
actions



Repeated Games

� Discount factor δ describes tradeoff between 
present and future payoff

� Mixed strategies induce probability 
distributions over histories

� The total payoff to a player is expected 
discounted stage payoffs

E[ρi(h)] = δ ∑t(1-δ)t E[ui(at)]
where the expectation is over histories



Repeated Games

� A Nash equilibrium is a mixed strategy profile 
such that no player can deviate and improve 
his or her payoff



Repeated Games

� Example: Prisoner’s Dilemma
� Consider strategies σ1=σ2

σ1(Deny*) = Deny
σ1(h) = Confess for any other h

� Then the realized history will be Deny*

� Payoff will be -2 for each player
� Consider deviation in which Row plays 

Confess at stage T+1



Repeated Games

Then the payoff to Row is

δ [ ∑T
t=1(-2)(1-δ)t + (-1)(1-δ)T+1 + ∑t>T+1(-4)(1-δ)t]

= δ ∑t(-2)(1-δ)t + δ (1-δ)T+1 + δ ∑t>T+1(-2)(1-δ)t

= -2 + δ (1-δ)T+1 - 2(1-δ)T+2

< -2

whenever δ (1-δ)T+1 - 2(1-δ)T+2 < 0 or δ < 2/3



Repeated Games

� Hence, strategies σ1=σ2

σ1(Deny*) = Deny
σ1(h) = Confess for any other h

are a Nash equilibrium for small enough δ



Repeated Games

� Folk Theorem: Consider the achievable 
payoffs of the stage game.

Row payoffs
C

ol
um

n 
pa

yo
ffs(3, 3) (0, 4)

(4, 0) (1, 1) (1, 1)

(4, 0)

(0, 4)

(3, 3)



Repeated Games

� Folk Theorem: Compute min-max payoffs for 
each player (the best payoff a player can 
guarantee him or herself) – the Threat Point.

Row payoffs
C

ol
um

n 
pa

yo
ffs(3, 3) (0, 4)

(4, 0) (1, 1) (1, 1)

(4, 0)

(0, 4)

(3, 3)



Repeated Games

� Folk Theorem: Individually rational region is 
set of payoffs above the Threat Point.

Row payoffs
C

ol
um

n 
pa

yo
ffs(3, 3) (0, 4)

(4, 0) (1, 1) (1, 1)

(4, 0)

(0, 4)

(3, 3)



Repeated Games

� Folk Theorem: Any payoff in the individually 
rational region is acheivable in a Nash 
equilibrium.

Row payoffs
C

ol
um

n 
pa

yo
ffs(3, 3) (0, 4)

(4, 0) (1, 1) (1, 1)

(4, 0)

(0, 4)

(3, 3)



Repeated Games

� Folk Theorem: Pick program of play that 
acheives chosen payoffs.  If a player 
deviates, switch to Threat Point.  This is a 
NE.

Row payoffs
C

ol
um

n 
pa

yo
ffs(3, 3) (0, 4)

(4, 0) (1, 1) (1, 1)

(4, 0)

(0, 4)

(3, 3)



Repeated Games

� Problem!  Threat Point may be NP-hard to 
compute.

� We reduce the problem of computing the 
Threat Point to 3-coloring.



Repeated Games

� Let G=(V,E) be graph we wish to 3-color

� There are three players 1, 2, and 3

� Show computing minmax payoff of 3 is hard



Repeated Games

� Stragies of 1 and 2: pick a node and a color
S1 = S2 = V x {Red, Green, Blue}

� Strategy of 3: pick a player and a node
S3 = {1, 2} x V



Repeated Games

� Let (v1, c1), (v2, c2), (i, v3) be strategy profile

� Payoff to 3 is
� 1 if v1 = v2 and c1 ≠ c2

� 1 if (v1, v2) ∈ E and c1 = c2

� 1 if v3 = vi

� 0 otherwise

1 and 2 are exposed

3 found i 



Repeated Games

If G is 3-colorable, then min-max payoff of 3 is 
1/n

s1 = (v, c(v))

s2 = (v, c(v))

Players 1 and 2 
pick uniformly 
random strategies 
consistent with 3-
coloring c



Repeated Games

If G is 3-colorable, min-max payoff of 3 is 1/n:

� Player 3 gets payoff of 1 only by guessing the 
node of a player.  Happens with probability 
1/n.

� This is min that 1 and 2 can force upon 3 
since there must be some node selected with 
probability at least 1/n



Repeated Games

If G is not 3-colorable, min-max payoff of 3 is at 
least 1/n + 1/(3n2)

� Consider any mixed strategies σ1, σ2

� Case 1: 
� For some i ∈ {1, 2} and v ∈ V, i chooses v with 

probability at least 1/n + 1/(3n2)
� Then 3 plays (i, vi)



Repeated Games

� Case 2: 
� For all i ∈ {1, 2} and v ∈ V, i chooses v with 

probability at most 1/n + 1/(3n2)
� Then 3 plays (i, v3) for a random i and v3

� With probability 1/n, v3 = vi and 3 gets 1
� We show 1 and 2 are exposed with prob. > 4/(9n2)

� This implies payoff of 3 is at least
(1/n) + (1-1/n)(4/9n2) ≥ 1/n + 1/(3n2)



Repeated Games

� Case 2: 
� For all i ∈ {1, 2} and v ∈ V, i chooses v with 

probability at most 1/n + 1/(3n2)
→ i chooses node v with probability at least 2/(3n)



Repeated Games

� Case 2: 
� Let E be event 1 and 2 are exposed

Pr[ E ] = ∑x,y ∈ V Pr[v1=x] Pr[v2=y] Pr[ E | v1=x, v2=y]
≥ 4/(9n2) ∑x,y ∈ V Pr[ E | v1=x, v2=y]

� But sum is expected number of inconsistencies in 
random colorings induced by mixed strategies.

� This is at least 1 by probabilistic method.



Repeated Games

Theorem [BCIKMP’08]: Given a 3-player n x 
n x n game with payoffs in {0,1} it is NP-hard 
to approximate the min-max payoff for each 
of the players to within 1/(3n2).



Repeated Games

� What about other algorithms for ǫ-NE? 
� Theorem [BCIKMP’08]: Finding an ǫ-NE of a 

k-player repeated game is as hard as finding 
an ǫ-NE of a (k-1)-player single-shot game.

� Proof Sketch:
� Take (k-1)-player game G
� Construct repeated Kibitzer version (next slide)
� Extract equilibrium from Kibitzer version



Repeated Games

Kibitzer version of G

Payoffs: ρ1 = -7, ρ2 = 0, ρkibitizer = 7

3,8

0,01,02,24,75,51,2

8,7

5,5

Player 1

Player 2

Kibitzer



Repeated Games

� Consider an ǫ-NE of the repeated Kibitzer 
version of a game G.

� If players are not playing an ǫ-NE of G, then 
Kibitzer has a response that improves payoff 
by more than ǫ.



Repeated Games

Open Question: 
Complexity in specific game classes



Next Time

Auction Theory


