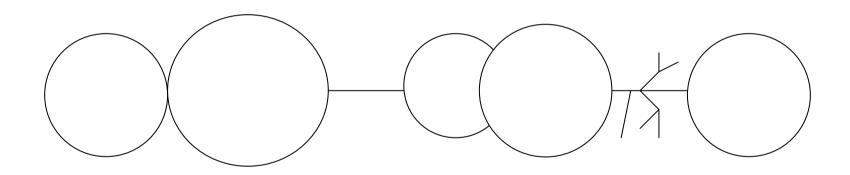
On the Graphs Whose Cycles of Length Divisible by a Given Number

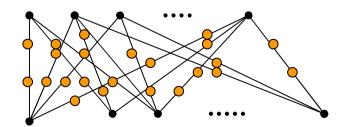
> Maryam Ghanbari Sharif University of Technology

Joint work with S. Akbari, A. Doni, S. Jahanbekam and A. Saito

Introduction

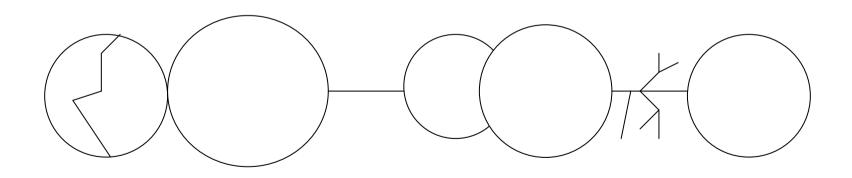
A graph G is said to be a (0 mod l)-cycle graph, if every cycle in G has length divisible by l.





Introduction

For an integer l with $l \ge 2$, a graph G is said to be a (0 mod l)-cycle graph, if every cycle in G has length divisible by l.



Introduction

A trail $P = v_0 v_1 ... v_s$ in a graph G is called a branch if $d_G(v_i) = 2$ for $1 \le i \le s - 1$, $d_G(v_0) \ne 2$, $d_G(v_s) \ne 2$. If $v_0 = v_s$, P is said to be closed. Otherwise, it is said to be open. *Lemma.* Let *l* be an integer with $l \ge 3$ and *G* be a connected (0 mod *l*)-cycle graph with $\delta(G) \ge 2$ and $\Delta(G) \ge 3$, then:

- If G has a closed branch C, then $l(C) \ge l$.
- If G has no closed branch, then G has two branches of length at least $\frac{1}{2}$ if l is even and at least l if l is odd, which share at least one endvertex.
- If $l \neq 4$, then G has a pair of adjacent vertices of degree 2.
- If *l*∉ {3,4,6}, then G has three consecutive vertices of degree two.

Vertex Coloring of Graphs

Let G be a graph. A vertex coloring of G is a function $c:V(G) \longrightarrow L$, where L is a set with this property: if $u, v \in V(G)$ are adjacent, then c(u) and c(v) are different.

A vertex k-coloring is a proper vertex coloring with |L|=k.

The smallest integer k such that G has a vertex kcoloring is called the chromatic number of G and denoted by $\chi(G)$.

The List Coloring of Graphs

Let G be a graph and for every $v \in V(G)$, let L(v)denote a list of colors available at v. A list coloring or choice function is a proper coloring f such that for every $v \in V(G)$, $f(v) \in L(v)$.

A graph G is k-choosable if every assignment of k-elements lists to the vertices permits a proper list coloring.

The list chromatic number, choice number, or choosability of a graph $G, \chi_l(G)$, is the minimum number k such that G is k-choosable.

The List Coloring of Graphs

Theorem. A path and cycle are 2-choosable, while an odd cycle is 3-choosable.

Edge Coloring of Graphs

Let G be a graph. An edge coloring of G is a function $c: E(G) \longrightarrow L$, where L is a set with this property: if $s, t \in E(G)$ are adjacent, then c(t) and c(s) are different.

An edge k-coloring is an edge coloring with |L|=k.

The smallest integer k such that G has an edge kcoloring is called the edge-chromatic number of G and denoted by $\chi'(G)$. Edge Coloring of Graphs

Vizing's Theorem.

If G is a graph, then $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

The List Edge-Coloring of Graphs

Let G be a graph and for every $e \in E(G)$, let L(e) denote a list of colors available for e. A list edge-coloring is a proper edge-coloring f with f(e) chosen from L(e) for each e.

The edge-choosablity, $\chi'_{l}(G)$, is the minimum k such that every assignment of lists of size k yields a proper list edge-coloring.

• For every graph G, $\Delta(G) \leq \chi_l(G)$.

The List Edge-Coloring of Graphs

Theorem.

A path and even cycle are 2-edge-choosable, while an odd cycle is 3-edge-choosable.

Total Coloring of Graphs

Let G be a graph. A total coloring of G is a function $c:V(G) \cup E(G) \longrightarrow L$, where L is a set with this property that color objects have different colors when they are adjacent or incident.

A total k-coloring is a total coloring with |L|=k.

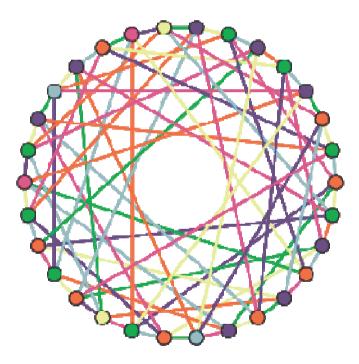
The smallest integer k such that G has a total k-coloring is called the total-chromatic number of G and denoted by $\chi''(G)$.

• For every graph G, $\chi''(G) \ge \Delta(G) + 1$.

Total Coloring Conjecture. For every graph G, $\chi''(G) \leq \Delta(G) + 2$.

With a prize 10,000,000 rials.

Total Coloring of Graphs



 $\chi''(G) = \Delta(G) + 1 = 6$

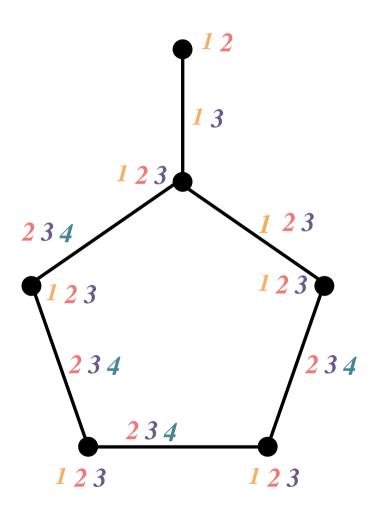
The List Total-Coloring of Graphs

Let G be a graph. For every $v \in V(G)$ and $e \in E(G)$, L(v)and L(e) denote a list of colors available at v and a list of colors available for e, respectively. A list total-coloring is a proper total coloring f with f(v) chosen from L(v) for each v and f(e)chosen from L(e) for each e, respectively. The total-choosablity, $\chi_{l}^{"}(G)$, is the minimum k such that every assignment of lists of size k to every vertices and edges yields a proper list coloring and list edge-coloring for G. $If G is a tree with \Delta(G) \ge 2$

then $\chi_l^{"}(G) = \Delta(G) + 1.$

• For every graph G, $\chi_l^{''}(G) \ge \Delta(G)$

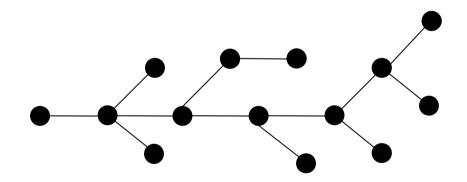
Example.



What we have done...

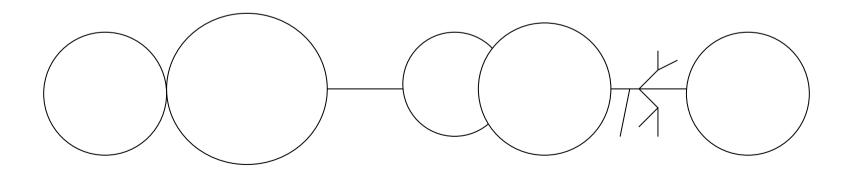
- **1.** The list chromatic number of (For $l \ge 3$, $\chi_l(G) \le 3$. **1.** There is a conjecture that $for every graph G, \\ \chi'_l(G) = \chi'(G).$
- 2. The list edge-chromatic number of (0 mod l)-cycle graphs Galvin (1995). For every (0 mod l)-cycle graph G, $\chi'_{l}(G) = \chi'(G) = \Delta(G).$

For $l \ge 3$, $\chi_l^{'}(G) =$ It is not hard to see that for every bipartite graph G, $\chi_l^{''}(G) = \Delta(G) + 2.$ If $l \notin \{1,2,4\}$ and $\Delta(G) \ge 3$, thus $\chi_l^{''}(G) = \Delta(G) + 1.$ *Remark.* For every natural number k, there is a bipartite graph G such that $\chi_l(G) > k$. Theorem. Let G be a graph and $l \ge 3$ be a natural number. If G is a (0 mod l)-cycle graph, then $\chi_l(G) \le 3$. And so, $\chi(G) \le \chi_l(G) \le 3$. For a positive integer s, a multigraph G is said to be s-degenerated if G can be reduced to K_1 by successive removal of vertices of degree at most s.



It is proved that for $l \ge 3$, every (0 mod l)-cycle graph contains at least a vertex of degree 2.

So, for every integer l, $l \ge 3$, a (0 mod l)-cycle graph is 2-degenerated.



It is easy to see that every s-degenerated graph is (s+1)-choosable.

So, it is concluded that for $l \ge 3$, every (0 mod l)-cycle graph is 3-degenerated.

For every graph G, the average degree of G is denoted by ad(G), where $ad(G) = \frac{2|E(G)|}{|V(G)|}$.

The maximum average degree, denoted by mad(G), is the maximum value of ad(H), where H is taken from all the subgraphs of G.

Theorem. For every s-degenerated graph G, mad(G) < 2s. **Theorem.** Let k be an integer with $k \ge 4$, and G be a graph with $mad(G) \le k$ and $\Delta(G) \ge 0.5(k^2 - k + 2)$, then $\chi'_{l}(G) = \Delta(G)$ and $\chi''_{l}(G) = \Delta(G) + 1$.

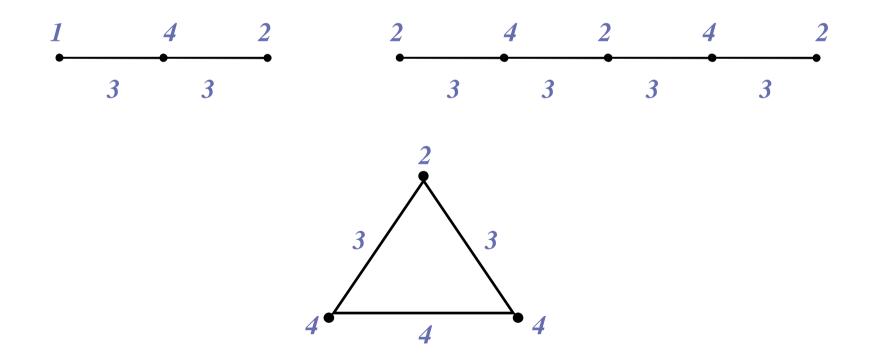
Corollary. Let *l* be an integer with $l \ge 3$. Then every (0 mod l)-cycle graph G with $\Delta(G) \ge 7$ is $\Delta(G)$ -edge choosable and $(\Delta(G) + 1)$ -total choosable.

Theorem. For $l \ge 3$, except odd cycles and l = 4, every (0 mod l)-cycle graph G satisfies $\chi'_{l}(G) = \chi'(G) = \Delta(G).$ Theorem. Let l be a positive integer with $l \notin \{1,2,4\}$. Then every (0 mod l)-cycle graph with $\Delta(G) \ge 3$, is $(\Delta(G) + 1)$ -total-choosable.

Some useful Lemmas for the proof of the theorem

$$\chi''(P_n) = 3, \qquad \chi''(C_n) = \begin{cases} 3 & n=3k \\ 4 & otherwise \end{cases}$$

Let H be a subgraph of G with $H \neq G$. Then $\chi_l^{"}(H) \leq \Delta(G) + 1$.



Conjecture. Every (0 mod 4)-cycle graph with $3 \le \Delta(G) \le 6$ satisfies $\chi'_{l}(G) = \Delta(G)$ and $\chi''_{l}(G) = \Delta(G) + 1$.

Thanks for your attention