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Background
Let G be a graph F be a field and S be aLet G be a graph, F be a field, and S be a
subset of F: 
An S-edge-weighting of G is an assignment of
weights by the elements of S to each edge of G.
A k-edge-weighting of G is an assignment of
an integer weight w(e) {1 k} to each edge e∈an integer weight, w(e)    {1,…, k} to each edge e. ∈



denotes the color of vertex v that isc denotes the color of vertex v, that is 
the sum of the weights on the edges incident to v.
cv

An edge weighting is called proper edge-
weighting 

if no two edges incident to the same vertexg
receive the same weight. 



An edge weighting is called a vertex injective ifAn edge weighting is called a vertex-injective if 
for

i f di ti t ti { } th levery pair of distinct vertices, {u, v}, the colors        
and     are distinct.

cu cv



An edge weighting is called a vertex coloringAn edge weighting is called a vertex-coloring 
if for every edge (u ,v), the colors     and       arecv c u

distinct.

Edge component: It is a component which is
isomorphic to .K 2isomorphic to      .K 2



The first question about non-proper edge
i hti i t d d b Ch t dweightings was introduced by Chartrand,

Jacobson, Lehel, Oellermann, Ruiz and Saba 
in 1998, asks for the smallest k such that G permits
vertex-injective k-edge-weighting.vertex injective k edge weighting.
This graph parameter is denoted s(G).



• For any graph G on n ≥ 4 vertices we have 
s(G) ≤ n-1.

• For every r-regular graph G we have s(G) ≤     + 
c, for some constant c. 

r
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1 2 3 C j t (2004)1, 2, 3-Conjecture (2004)
Karonski Luczak and Thomason initiatedKaronski, Luczak and Thomason initiated
the study of vertex-coloring edge-weightings.
They conjectured that: 
1, 2, 3- Conjecture. 
Every graph without an edge component permits 

a 
vertex coloring 3-edge weighting.



Theorem Every graph G with no edgeTheorem. Every graph G with no edge
component and χ(G) ≤ 3 permits vertex coloring 
3-edge weighting.

Theorem. Every graph G with no edge
t it t l i 213 dcomponent permits vertex coloring 213-edge 

weighting. 



Addario Berry  Dalal McDiarmid  Reed andAddario-Berry, Dalal, McDiarmid, Reed and
Thomason.
(2007)
Theorem. Every graph G with no edge y g p g

component 
permits vertex coloring 30-edge weighting.permits vertex coloring 30 edge weighting.



Addario Berry Dalal and ReedAddario-Berry, Dalal and Reed.
(2008)
Theorem. Every graph G without an edge 
component permits vertex coloring 16-edgep p g g
weighting.



An edge weighting is called a vertexAn edge weighting is called a vertex-
distinguishing 

if f t d th lti t f i htif for every vertex u and v, the multiset of weights
appearing on edges incident to u is distinct from 
the multiset of weights appearing on edges 

incident
to v.



What is the smallest k such that G permitsWhat is the smallest k such that G permits 
vertex-

di ti i hi k d i hti ?distinguishing k-edge weighting?
This graph parameter is denoted c(G).

Theorem. If G is an r-regular graph, then there C2C nC r
1

1 nC r
1g g p ,

exist constants     and     such that         ≤ c(G) ≤          
C2C1 nC1 nC2



An edge weighting is called an adjacent vertexAn edge weighting is called an adjacent vertex-
distinguishing if for every edge (u,v), the multiset
of weights appearing on edges incident to u is
distinct from the multiset of weights appearing on 
edges incident to v.



Multiset version of the 1, 2, 3-conjecture

What is the minimum k such that there is an 
adjacent vertex distinguishing k-edge weighting? 



Addario-Berry, Aldred, Dalal and Reed :Addario Berry, Aldred, Dalal and Reed :

Theorem. Every graph G without an edgeTheorem. Every graph G without an edge
component  has an adjacent vertex distinguishing 
4-edge weighting.g g g

Theorem. Every graph G without an edge y g p g
component and with minimum degree at least 

1000, 
has an adjacent vertex-distinguishing 3-edge-
weighting. 



Our Results 
Th  L t b d th di ti t lTheorem. Let a, b and c are three distinct real
numbers.
i. For every natural number n ≥ 3, the complete
Graph has a vertex coloring {a, b, c}-edgeKnGraph       has a vertex coloring {a, b, c} edge
weighting.
ii F t l b d ith

Kn

ii. For every natural numbers m and n with
m + n > 2, the complete bipartite graph         has K nm,

a vertex coloring {a, b}-edge-weighting.



Question Suppose 1 2 3 conjecture is trueQuestion. Suppose 1, 2, 3 conjecture is true
for graph G. Does G permit vertex coloring
{a, b, c}-edge weighting for every real
distinct number a b and c?distinct number a, b, and c?



A dynamic coloring is a proper vertex k coloringA dynamic coloring is a proper vertex k-coloring 
of G if for every vertex v with degree at least
2, the neighbors of v receive at least two different
colors.  

The dynamic chromatic number of G is theThe dynamic chromatic number of G is the
smallest integer k such that G has a k-dynamic 

l i d d t d b (G)χcoloring and denoted by     (G).χ 2



Theorem L t G b l bi tit hTheorem. Let G be an r-regular bipartite graph
where r ≥ 4. Then there is a dynamic vertex
coloring of G by 4 colors, using 2 colors in each 
color class.



Theorem  For each natural numbers n and r andTheorem. For each natural numbers n and r and
two distinct real numbers a and b with r ≥ 4, 
every r-regular bipartite graph has a vertex
coloring {a, b}-edge-weighting.g { , } g g g



ProofProof. 
Let X = {   , . . . ,   } and Y = {   , . . . ,    } be two parts of G.
With t l f lit i t X b i th

v 1 vn u nu1

Without loss of generality, in part X, by previous theorem 
there exists a dynamic coloring with two colors a and b.
N l ll d i id i h i h lNow, we color all edges incident with a vertex with color a 
by a, and a vertex with color b by b.



So in part Y for every k 1 ≤ k ≤ n we haveSo, in part Y, for every k, 1 ≤ k ≤ n, we have     
= a      + (r −    ) b, for some natural number  1 ≤      ≤ r-1. 

Now if a+(r − )b = ra or a+(r− ) b = rb
cu k

s k sk sk

s s sk sNow, if     a+(r −     )b = ra or      a+(r−    ) b = rb.
Then, we have r =     or a = b, respectively.
But this is contradiction So we have a + (r )b ≠ ras

sk sk sk sk

s
sk

But this is contradiction. So we have       a + (r −    )b ≠ ra
and     a+ (r −    ) b ≠ rb. Thus, we get the result.

sk

sk

sk

sk



Conjecture Every 3 regular bipartiteConjecture. Every 3-regular bipartite 
graph 

has a vertex coloring {a, b}-edge-weighting.



Let F be a field An edge weighting is called aLet F be a field. An edge weighting is called a
vertex colorable k-list edge-weighting  if for every 

LLe
E(G), and every list assignment,        F, |     |= k,

Le⊆Le∈

to edge e, one could obtain a vertex coloring edge-
weighting such that w(e)         .

Le∈
g g ( )



An edge weighting is called a vertex colorableAn edge weighting is called a vertex colorable 
positive k-list-edge-weighting if in the previous 
definition we change F to positive real numbers.



Theorem E t ith ≥ 3 iTheorem. Every tree with n ≥ 3 is 
vertex colorable  positive 2-list-edge weighting.



If edge e and vertex i are incident then we write e ~ iIf edge e and vertex i are incident then we write e ~ i. 
For every g = ij (i < j) assign the variable     to g.
Define =

∈ )(GE xg

)( xxf ∑∑ xxDefine                             =                           .
Now, we introduce                        as                                 .                
For every ( )

),...,(
1

xxf ee ng ∑∑ ∈∈
−

ieGEe eieGEe e xx ~),(~),(

),...,(
1

xx ee m
Gθ ∏ ∈Ee e xxf ee n

),...,(
1

a ∈ RmaFor every (   , . . .,     )         .
we associate an edge weighting w, such that w(     ) =    .
f i 1 ≤ i ≤

am ∈ Ra1

e i ai

for every i, 1 ≤  i ≤  m.



It is easy to see that ≠ 0 if and only if the)(θIt is easy to see that ≠ 0 if and only if the
edge weighting corresponding to                  forms a 

),...,(
1 aa mGθ

),...,( 1 aa m

vertex-coloring edge-weighting. 



Theorem (Combinatorial Nullstellensatz)Theorem. (Combinatorial Nullstellensatz). 
Let F be an arbitrary field, and let f = f(    , . . . ,    

)
x1 xn

)
be a polynomial in F[    , . . . ,     ]. Suppose that 

xnx1

∑
n

i
it

1
t i

the
degree of f is        where each    is a

=i 1

∏n xti

nonnegative integer, and suppose the
coefficient of in f is nonzero. Then, if

∏=i x1

SiS 1 Sn

SS
t i

coefficient of                in f is nonzero. Then, if
, . . .,      are subset of F with |    | >    , there are

th t f( ) ≠ 0

SnS1 S 1 sn sns1∈∈

, . . .,            so that f(    , . . .,    ) ≠ 0 .



Theorem Let G be a graph and ∆(G) ≤ 3 ThenTheorem. Let G be a graph and ∆(G) ≤ 3 . Then 
G is vertex colorable 5-list edge-weighting.



Proof   Let E(G) = { } First note that for everyeProof.  Let E(G) = {   , . . . ,   }. First note that for every 
two edges    ,                   ,      has nonzero coefficient in

( ) if d l if d

e 1 em

e 'e ∈ )(GE xe

'F (      , . . . ,    ) if and only if    and     are
incident. Since ∆ (G) ≤ 3, each edge of G is incident with at

xe1
xe e 'eFei

most 4 other edges. Thus, for each e            , the variable
has nonzero coefficient in at most four      (     , . . .,       ).

∈ )(GE

xe xe1
xem

Fei

.      



Now in each monomial of ( ) every variableθ x x xNow, in each monomial of     (     , . . .,     ) every variable 
has degree at most 4. Since     (      , . . . ,      ) is nonzero,
by Theorem 2 if we assign a list of five numbers to each edge

θ G xe1
xem xe

θ G xe1
xem

by Theorem 2 if we assign a list of five numbers to each edge,
then we can weight each edges with a number from its list so
that it induces a vertex coloring edge weightingthat it induces a vertex-coloring edge-weighting.



Thanks for your attentionThanks for your attentionyy



ProofProof.
i. We  apply by induction on n. Without loss of generality

th t < b < F 3 th ti i t i i lassume that a < b < c. For n = 3, the assertion is trivial. 
Assume that       has a vertex coloring {a, b, c}-edge

i h i N dd h V( ) d j i
Kn 1−

weighting. Now, add a new vertex      to the V(       ) and join
it to all vertices of V(       ). 

vn

Kn 1−

Kn 1−



If there exists a vertex V( ) such that all edgesv Kn 1∈If there exists a vertex         V(       ) such that all edges
incident with     have weights c, then we give weight a to 
all edges incident with Since is (n 1) a and

vi Kn 1−

vi

v

∈

cvall edges incident with     . Since      is (n-1) a, and
for every j, 1 ≤ j ≤ n-1,        is more than (n-1) a, we obtain 
the result

vn cvn

cv j

the result.



Thus suppose that there is no vertex in V( ) such thatK n 1Thus, suppose that there is no vertex in V(      ) such that 
all incident edges have the same weight c.  In this case we 
assign c to all edges incident with Since

K n 1−

v c vassign c to all edges incident with      . Since     
is (n-1) c, and for every j, 1 ≤ j ≤  n-1,       < (n-1) c, 
we obtain the result

v n v n

cv j

we obtain the result.



ii Let X = { } and Y = { } bev u uii. Let X = {   , . . .,    } and Y = {     , . . .,     } be
two parts of         . Without loss of generality, in part X,
for every i 1 ≤ i ≤ l and 1 ≤ l ≤ n 1 we give weight a to

v 1 vn u 1 u m

K nm,

for every i, 1 ≤  i ≤ l, and 1  ≤  l  ≤  n - 1, we give weight a to 
all edges incident with    , and for every j, l < j  ≤ n, we give
weight b (b ≠ a) to all edges incident with

vi

vweight b (b ≠ a) to all edges incident with     . 
So, in part Y, for every k, 1 ≤  k ≤ m, we have     = la + 
( l) b L t ≤ 2 Th h

v j

cuk

P C(n - l) b. Let m , n ≤ 2. Then, we have     or      . P3 C 4



We give weight a and b to two edges of and a b bP3We give weight a and b to two edges of     , and a, b, b, 
and a, to edges of      and we obtain the result.
Thus Without loss of generality suppose that n > 2

P3

C4

Thus, Without loss of generality suppose that n > 2. 
Then, we have la + (n - l)b ≠ ma, mb for some positive 
integer l Therefore this vertex coloring is properinteger l.  Therefore this vertex coloring is proper. 


