Energy and Laplacian Energy of Graphs

ALI REZA ASHRAFI

Department of Mathematics, University of Kashan, Kashan 87317-51167, I. R. Iran E-mail: ashrafi@kashanu.ac.ir

Contents

- Laplacian Matrix
- Laplacian Energy
- Estrada Index
- Laplacian Estrada I ndex
- Results

Laplacian Matrix

- Let $\mathbf{D}(\mathrm{G})=\left[\mathrm{d}_{\mathrm{ij}}\right]$ be the diagonal matrix associated with the graph G , defined by $\mathrm{d}_{\mathrm{i}}=\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)$ and $\mathrm{d}_{\mathrm{ij}}=0$ if $\mathrm{i} \neq \mathrm{j}$, and $\mathrm{L}(\mathrm{G})$
$=\mathbf{D}(\mathrm{G})-\mathbf{A}(\mathrm{G})$ be its Laplacian matrix.

Laplacian Eigenvalues

- The Laplacian polynomial of G is the characteristic polynomial of its Laplacian matrix, $\psi(G, \lambda)=\operatorname{det}\left(\lambda I_{n}-\mathbf{L}(G)\right)$. Let $\mu_{1} \geqslant \quad \mu_{2} \geq \quad \ldots \geq \mu_{n}$ the Laplacian eigenvalues of G , i. e., the roots of $\psi(\mathrm{G}$, $\lambda)$.

Laplacian Eigenvalues

- It is well known that $\mu_{\mathrm{n}}=0$ and that the multiplicity of 0 equals to the number of (connected) components of G.

Ivan Gutman and Bo Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006) 29-37.

- The Laplacian energy of the graph G is a very recently defined graph invariant defined as

$$
L E=L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|
$$

Laplacian Eigenvalues

- $\Sigma \mu_{\mathrm{i}}=2 \mathrm{~m}$ and $\Sigma \mu_{\mathrm{i}}^{2}=2 \mathrm{~m}+\mathrm{M}_{1}(\mathrm{G})$, where $\mathrm{M}_{1}(\mathrm{G})=\sum \mathrm{d}_{\mathrm{i}}{ }^{2}$.

Graph Operations

- The Cartesian product $\mathrm{G} \times \mathrm{H}$ of graphs G and H has the vertex set $\mathrm{V}(\mathrm{G} \times \mathrm{H})=$ $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and $(\mathrm{a}, \mathrm{x})(\mathrm{b}, \mathrm{y})$ is an edge of $G \times H$ if $a=b$ and $x y \in E(H)$, or $a b \in$ $E(G)$ and $x=y$.

J oin

- The join $\mathrm{S}=\mathrm{G}+\mathrm{H}$ of graphs G and H with disjoint vertex sets $\mathrm{V}_{1}=\mathrm{V}(\mathrm{G})$ and $V_{2}=V(H)$ and edge sets $E_{1}=E(G)$ and $\mathrm{E}_{2}=\mathrm{E}(\mathrm{H})$ is the graph union $\mathrm{G}_{1} \cup \mathrm{G}_{2}$ together with all the edges joining V_{1} and V_{2}.

Graph Operations

- If $G=G_{1}+\ldots+G_{n}$ then we denote G by $\sum_{i=1}^{n} G_{i}$. In the case that $G_{1}=G_{2}=\ldots$ $=\mathrm{G}_{\mathrm{n}}=\mathrm{H}$ then and we denote G by nH .

Topological Index

- A topological index Top(G) of a graph G is a numeric quantity related to G . This means that if G and H are isomorphic then $\operatorname{Top}(\mathrm{G})=\operatorname{Top}(\mathrm{H})$.
- Obviously, |V(G)| and |E(G)| are topological index.

Topological Index

- The Wiener index W was the first nontrivial topological index to be used in chemistry.
- It is defined as the sum of all distances between vertices of the graph under consideration.
- Wiener H (1947) Structural determination of the paraffin boiling points, J. Amer. Chem. Soc., 69, 17-20.
E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett., 319(2000), 713-718.
- The Estrada index EE(G) of the graph G is defined as the sum of e^{λ} over all eigenvalues of G. This quantity, introduced by Ernesto Estrada.

Laplacian Estrada index

- The Laplacian Estrada index LEE(G) of the graph G is defined as the sum of e^{μ} over all Laplacian eigenvalues of G. This quantity.

Main Results

Proposition 1. $L E(G) \geq n|\psi(2 m / n)|^{1 / n}$, with equality if and only if G is a disjoint union of an empty graph and n copies of K_{2}.

Main Results

- Proposition 1 can be somewhat enhanced.

$$
L E(G) \geq \sqrt{Z g-2 m\left(\frac{2 m}{n}-1\right)+\left|\psi\left(G, \frac{2 m}{n}\right)\right|^{1 / n}}
$$

Main Results

- Proposition 2. $\left[\operatorname{LE}(\bar{G})-2 \frac{m}{n}\right]-\left[\operatorname{LE}(G)-2 \frac{m}{n}\right] \leq n-1$
- with equality if and only if G is empty or complete graph with n vertices.

Main Results

- Proposition 3. Let G be a d-regular graph with $d \geq 2$ and $L(G)$ be the line graph of G. Then $\mathrm{LE}(\mathrm{G}) \leq \mathrm{LE}(\mathrm{L}(\mathrm{G})) \leq$ LE(G) $+2 n(d-2)$.

Main Results

Proposition 4. If G_{1}, \ldots, G_{k} are graphs then

$$
\frac{L E\left(\prod_{i=1}^{k} G_{i}\right)}{\left|\prod_{i=1}^{k} G_{i}\right|} \leq \sum_{i=1}^{k} \frac{L E\left(G_{i}\right)}{\left|G_{i}\right|}
$$

with equality if and only if every G_{i} is an empty graph.

Main Results

Proposition 5. If $G_{1}, G_{2}, \ldots G_{k}$ are graphs with exactly n vertices and m edges then
$\mathrm{LE}\left(\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{G}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{LE}\left(\mathrm{G}_{\mathrm{i}}\right)+2(\mathrm{k}-1)(\mathrm{n}-2 \mathrm{~m} / \mathrm{n})$.

Main Results

- Corollary 1. If G is a graph then LE(kG) $=$ kLE(G) $+2(k-1)(n-2 m / n)$.
- Corollary 2. $\operatorname{LE}\left(K_{n}\right)=2(n-1)$ and
- LE (K

Main Results

- Lemma 1. Let G be a graph with exactly n vertices. Then $\mathrm{EE}(\mathrm{G}) \geq \mathrm{n}$ with equality if and only if G is empty.
- Lemma 2. If G is a k-regular connected graph then

$$
E E(L(G))=e^{k-2} E E(G)+(m-n) e^{-2} .
$$

Main Results

- Proposition 6. Suppose G and H are rand s-regular graphs with exactly p and q vertices, respectively. Then $\mathrm{EE}(\mathrm{G}+\mathrm{H})$ $=E E(G)+E E(H)-\left(e^{r}+e^{s}\right)+$ $2 e^{(p+q) / 2} C h\left(1 / 2\left[(r+s)^{2}+4 p q\right]^{1 / 2}\right)$.

Main Results

- Corollary 1. If G is r-regular n-vertex graph then $\operatorname{EE}(2 G)=2 E E(G)-2 e^{r}+$ 2e^rCh(n)).
- Corollary 2. Let $K_{m, n}$ denote the complete bipartite graph. Then $\mathrm{EE}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)$ $=m+n-2+2 C h(\sqrt{ }(m n))$.

Main Results

- Corollary 3. If G is r-regular then $E E(3 G)=3 E E(G)-3 e^{r}+2 e^{r} C h(n)+$ $2 e^{2 r+2} \mathrm{Ch}((3 n) / 2)-e^{r+n}$.
- Corollary 4. $\mathrm{EE}\left(\mathrm{S}_{\mathrm{n}+1}\right)=\mathrm{n}-1+$ $2 \mathrm{Ch}(\sqrt{ } \mathrm{n})$.

Main Results

- Corollary 5. $\mathrm{EE}\left(\mathrm{W}_{\mathrm{n}+1}\right)=\mathrm{EE}\left(\mathrm{C}_{\mathrm{n}}\right)-\mathrm{e}^{2}+$ - $2 \mathrm{eCh}(\sqrt{ }(\mathrm{n}+1))$.

Main Results

- Proposition 7. Suppose G is a r regular graph. Then

$$
\operatorname{EE}(\overline{\mathrm{G}})=\mathrm{e}^{-1} \sum_{i=1}^{n} \mathrm{e}^{-\lambda_{i}}+\mathrm{e}^{\mathrm{n}-r+1}-\mathrm{e}^{-\mathrm{r}-1}
$$

- In particular, if G is bipartite then
$\operatorname{EE}(\overline{\mathrm{G}})=\mathrm{e}^{-1} E E(\mathrm{G})+\mathrm{e}^{\mathrm{n}-\mathrm{r}+1}-\mathrm{e}^{-\mathrm{r}-1}$

Main Results

- Let $R(G)$ be the graph obtained from G by adding a new vertex corresponding to each edge of G and by joining each new vertex to the end points of the edge responding to it.
- Proposition 8. $\mathrm{EE}\left(\mathrm{R}\left(\mathrm{C}_{\mathrm{n}}\right)\right) \leq \mathrm{n}\left(1+\mathrm{e}^{1-\sqrt{2}}\right)$.

Main Results

- Proposition 9. Suppose $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{r}}$ are graphs. Then

$$
E E\left(\Pi_{i=1}^{r} G_{i}\right)=\prod_{i=1}^{r} E E\left(G_{i}\right) .
$$

- In particular, $\mathrm{EE}\left(\mathrm{G}^{\mathrm{n}}\right)=\mathrm{EE}(\mathrm{G})^{\mathrm{n}}$.

Main Results

- Corollary 1. Let Q_{n} be a hypercube by 2^{n} vertices then $E E\left(Q_{n}\right)=E E\left(K_{2}{ }^{n}\right)=$ 2Ch(1) ${ }^{\mathrm{n}}$.
- Corollary 2. Let R and S be C_{4} nanotube and nanotorus, respectively. Then $E E(R) \approx m n l_{0}{ }^{2}$ and $E E(S) \approx$ $m(n+1) I_{0}{ }^{2}-m \operatorname{Cosh}(2) I_{0}$.

Laplacian Estrada Index

$$
L E E(G)=\sum_{i=1}^{n} e^{\mu_{i}-\frac{3 m}{n}}, 1 \leq i \leq n .
$$

Main Results

Proposition 5. The following properties of L-Estrada index are hold:
a) $L E E(G) \geq n$ with equality if and only if $G=\bar{K}_{n}$,
b) Suppose G_{1} and G_{2} are graphs with $\left|V\left(G_{i}\right)\right|=n_{i}$ and $\left|E\left(G_{i}\right)\right|=$

c) $L E E\left(\prod_{i=1}^{n} G_{i}\right)=\prod_{i=1}^{n} L E E\left(G_{i}\right)$. In particular, $L E E\left(G^{n}\right)=L E E(G)^{n}$.
d) If G is a r-regular bipartite graph then $L E E(G)=E E(G)$.

Main Results

- Let G be an (n, m)-graph. Then the Estrada index of G is bounded as:

$$
e^{-\frac{2 m}{n}} \sqrt{n(n-1) e^{\frac{4 m}{n}}+n+8 m+2 Z g(G)} \leq L E E(G) \leq\left(n-1+e^{2 m}\right) e^{-\frac{2 m}{n}}
$$

- Equality on both sides of above inequality is attained if and only if $\mathrm{G} \cong$ K_{n}.

Main Results

- Corollary. If G is an r-regular bipartite graph then $\left(n^{2}+2 n r\right)^{1 / 2} \leq \operatorname{LEE}(G) \leq n-2$ $+2 \operatorname{Cosh}\left((n r)^{1 / 2}\right)$.

Main Results

- If G is an r-regular graph with n vertices then

$$
\begin{aligned}
1+\sqrt{n-2+2 n r+4 r-4 r^{2}+e^{-2 r}+(n-1)(n-2) e^{\frac{2 r}{n-1}}} & \leq L E E(G) \\
& \leq n-1-r^{2}+\frac{n r}{2}+e^{r}
\end{aligned}
$$

Thank You For Your Attention!

