Ortho-radial drawings

Mahdieh Hasheminezhad, S. Mehdi Hashemi, Maryam Tahmasbi

> Faculty of Mathematics and Computer Science Amirkabir University of Technology

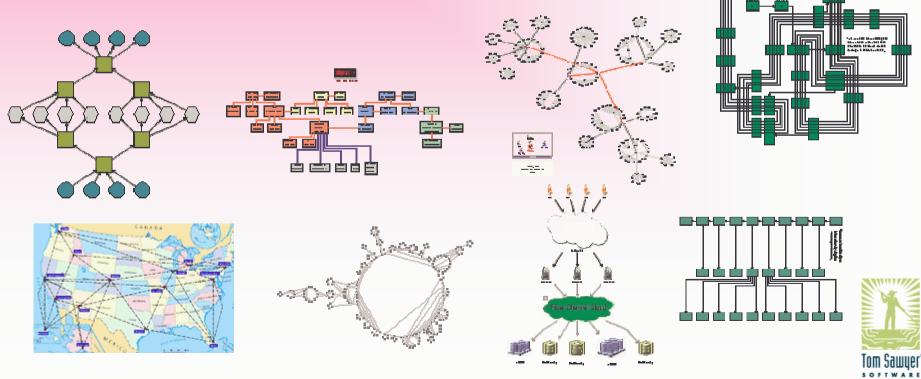
> > IPM, November 2008

Contents

- Graph drawing
- Orthogonal drawing
- Orthogonal drawing with given shape
- Ortho-radial drawing
- Ortho-radial drawing with given shape
- Rectangular drawing
- Rectangular-radial drawing

Graph Drawing

A drawing of a graph G is a mapping from vertex set and edge set of G into Rⁿ, n=2,3, in which vertices have distinct coordinates and each edge is a simple Jordan curve.

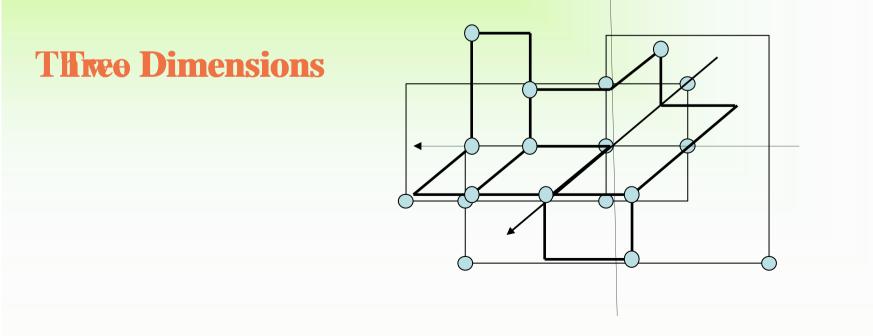


Embedding

- An embedding is an assignment of a cyclic order of neighbours of each vertex.
- An embedding of a graph *G* is a planar embedding if there is a non-crossing drawing of *G* such that the neighbors of each vertex appear around the vertex with the same order as in the embedding.

Orthogonal Drawing

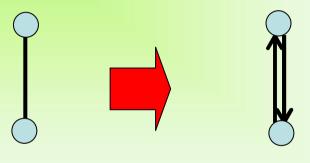
An orthogonal drawing of a graph G is a planar drawing of G where each vertex has integer coordinates, and each edge is represented by a chain of segments that are parallel to one of the axes.



Orthogonal Drawings with given shape

Dart:

The term dart is used for each of the two possible orientations (u,v) and (v,u) of an undirected edge uv.

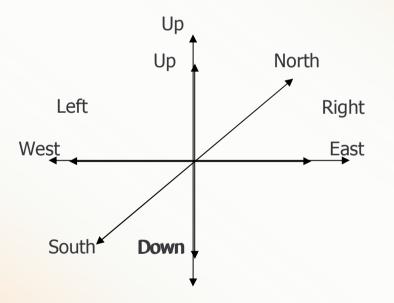


Shape:

A shape of a graph *G* is a labeling of darts of *G* with directions.

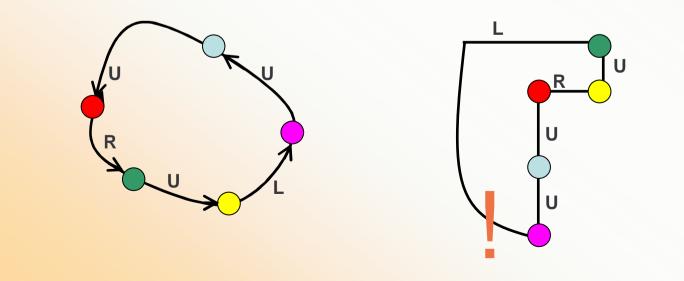
Directions

Three Dimentitions



Question

For which shapes is there an orthogonal drawing in which the darts of *G* are drawn in the same direction as their labels in the shape?

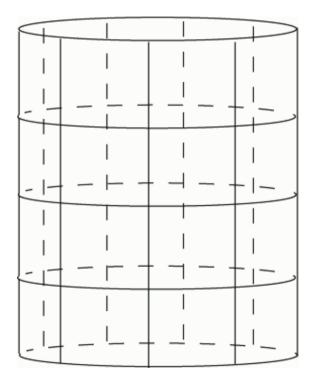


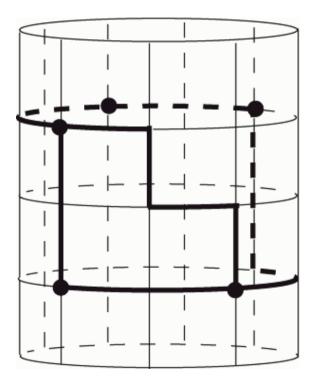
Which shapes have a drawing?

 Vijayan and Wigderson (1985): A necessary and sufficient condition to determine which 2D-shapes have orthogonal drawing.
 Di Battista, Liotta and Lubiw (2001,2002): solved this problem for 3D-shapes of cycles and paths.
 Di Giacomo, Liotta and Patrignani (2002): A sufficient condition for 3D- shapes of theta

graphs

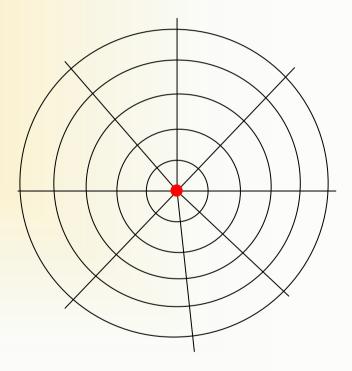
Extension of orthogonal drawings to drawings on a cylinder





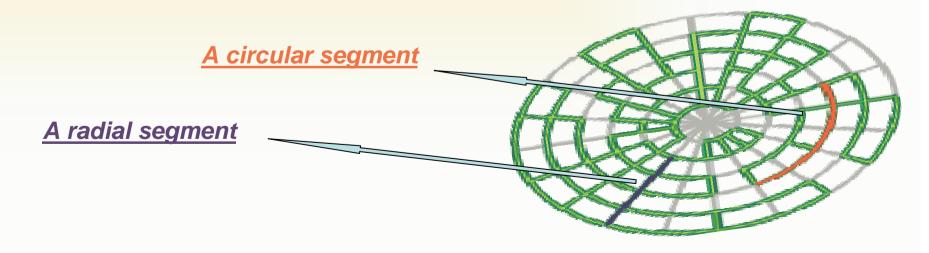
Ortho-radial grid

• Given a point *S*, the circles with center *S* and half lines starting at *S* define a grid called ortho-radial grid.



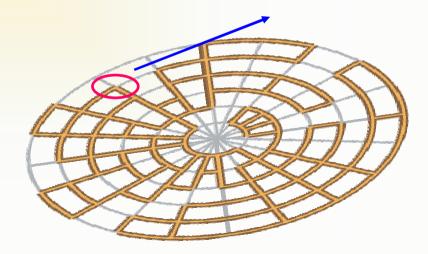
Radial and circular segments

 Given a point S on the two dimensional plane, a segment is called <u>radial segment</u> if it is part of a half line starting at S. An arc is called <u>circular segment</u> if it is part of a circle with center S.

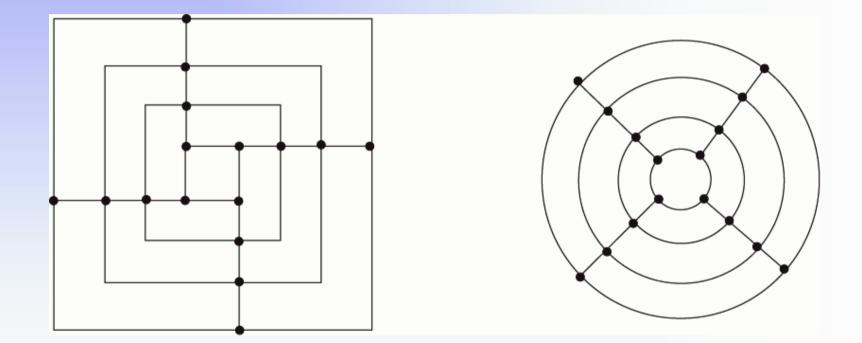


Ortho-radial Drawing

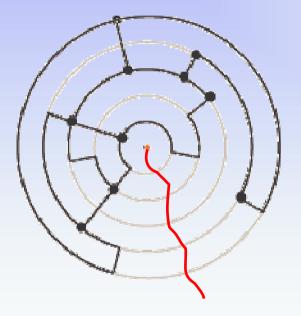
- A planar drawing of a graph G is called an *orthoradial drawing* w.r.t. S if each edge is a chain of radial and circular segments.
- In an ortho-radial or orthogonal drawing a place where an edge changes its direction is called a bend.



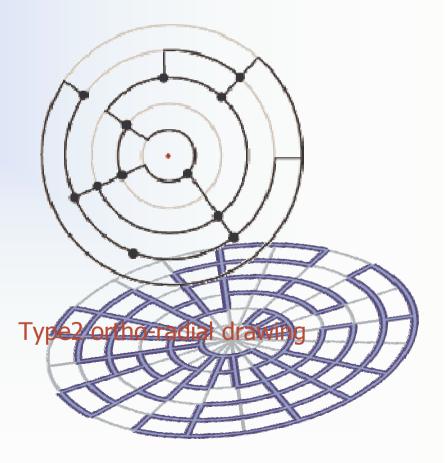
Why Ortho-radial drawings?



Different Types of Ortho-radial drawings

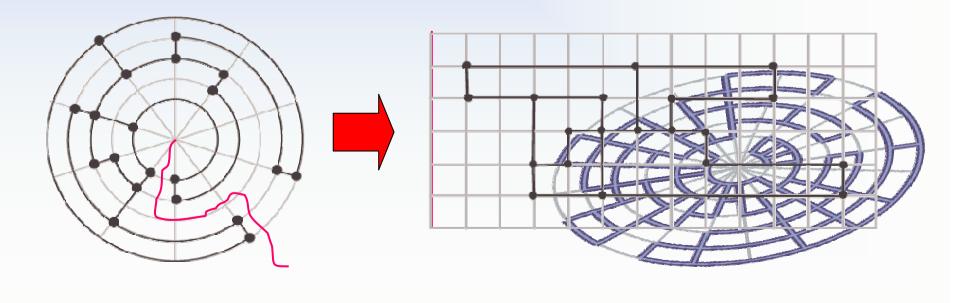


Type1 ortho-radial drawing



Type1 Ortho-radial Drawings and Orthogonal Drawings

• **Theorem 1**: Every type-1 ortho-radial drawing of a graph *G* can be transformed into an orthogonal drawing in the plane in such a way that each vertical segment becomes a radial segment and each horizontal segment becomes a circular segment, and vice versa.

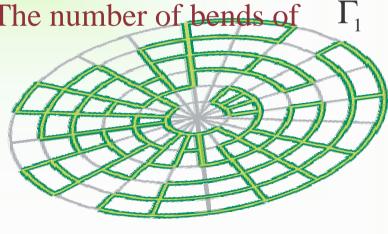


Number of bends

Corollary: Given a graph G:

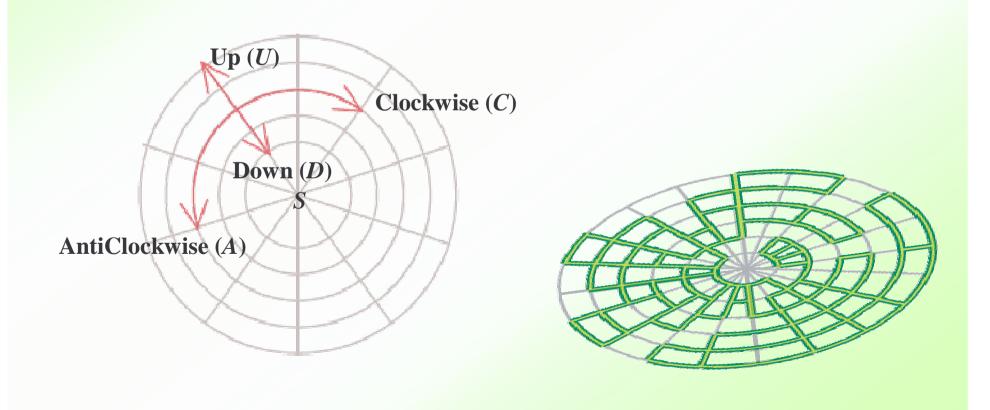
- Γ_1 : an orthogonal drawing of graph G with minimum number of bends
- Γ_2 :an ortho-radial drawing of graph G with minimum number of bends

The number of bends of $\Gamma_2 \leq$ The number of bends of



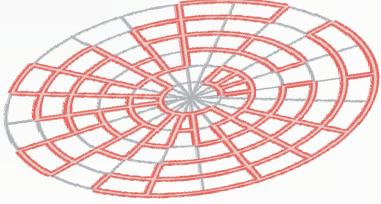
Directions

In an ortho-radial grid w. r. t. point *S*, we define four directions.



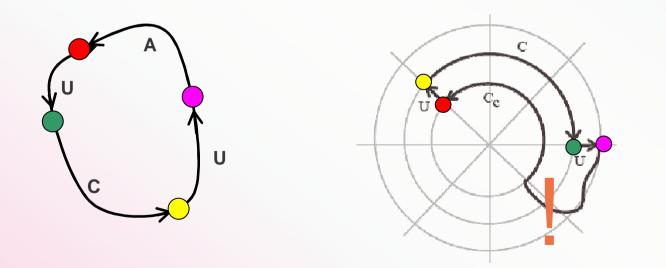
C-shape

- A C-shape is a labeling of the darts of G with labels in the set {C, A, D, U} such that
 - » The two darts of each edge have opposite labels
 - » No two darts exiting a vertex have the same label.



Drawable C-shape

• A C-shape of a graph G is called drawable, if there is an ortho-radial drawing of G where each dart is drawn in the same direction as its label.

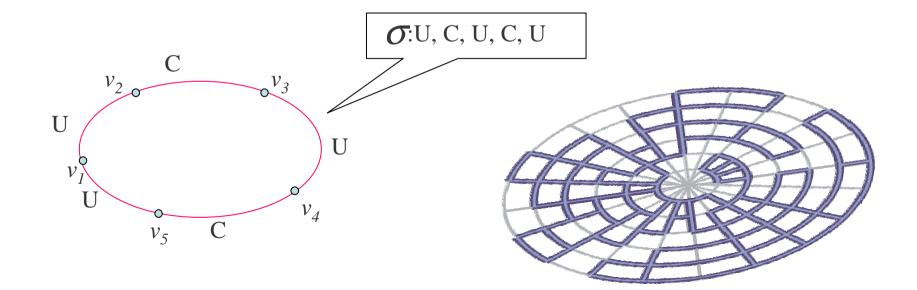


Embeddings induced by C-shapes

- Let G be a graph with C-shape γ .The labels γ of define a cyclic order of the darts leaving each vertex; that is, they define an embedding of the graph on a surface.
- This is a planar embedding if the number of faces obeys Euler's formula.

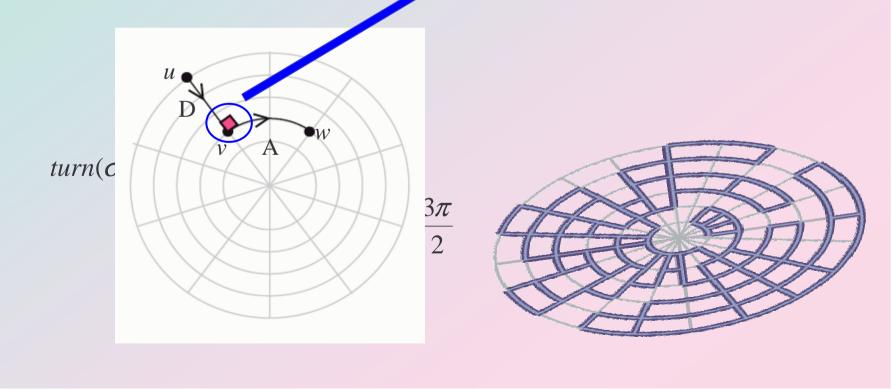
C-shape cycle

• Let *C*: $v_1, v_2, ..., v_{n=}v_1$ be a cycle with C-shape γ And $\sigma: \sigma_1, \sigma_2, ..., \sigma_{n-1}$ be the labels of darts (v_1, v_2) , $(v_2, v_3), ..., (v_{n-1}, v_n)$. We call σ a C-shape cycle.



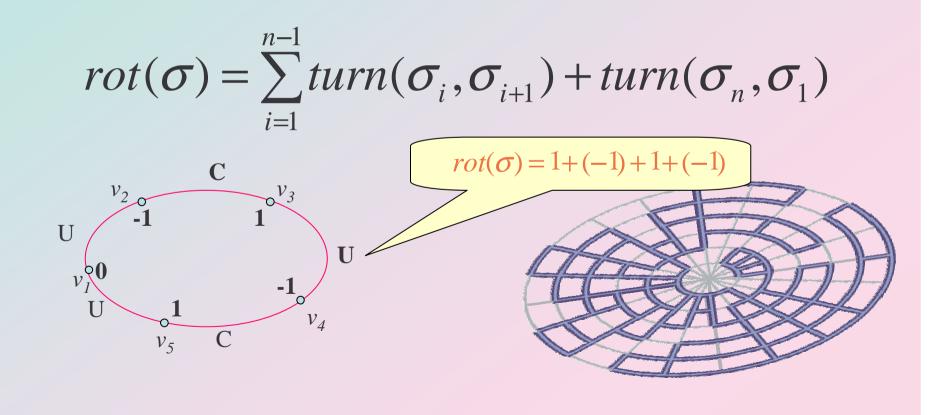
Turn and Rotation

• Let e=(u,v) and e'=(v,w) be two consecutive darts with labels σ_1 and $\sigma_2 \cdot \theta(e,e')$ is the angle on the left when we move from *u* to *w*.



Turn and Rotation

If $\sigma: \sigma_1, \sigma_2, ..., \sigma_{n-1}$ is a C-shape cycle, the rotation of σ , *rot*(σ), is defined as follows;



Some results on P-shapes

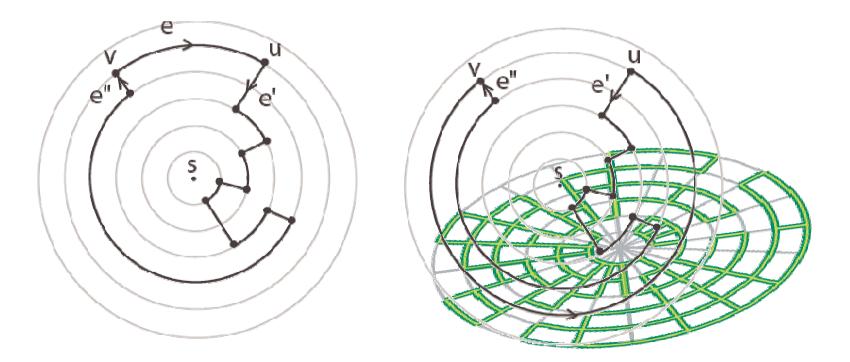
- A P-shape cycles σ is drawable iff $rot(\sigma) = \pm 4$.
- Theorem (Vijayan and Wigderson 1985):
 Let G be a biconnected graph with at least three edges. A P-shape σ of G is drawable iff the embedding induced by σ is a planar embedding and the P-shape of each face is drawable.

Drawable C-shape cycles

- Theorem2: A C-shape cycle σ is drawable if and only if one of the following cases happens:
- $\text{ rot}(\sigma) = \pm 4$
- •. $rot(\sigma) = 0$ and all labels of σ are the same (*C* or *A*).
- $rot(\sigma) = 0$ and σ contains at least one *D* and one *U* label.

proof of necessity: Let Γ be a drawing of the cycle with C-shape σ .

1- Γ is that ype to dotho-markial, drawing (C, D) + $rot(\sigma) = \pm 4$ 2- Γ the algorithm of the formula of the second second



proof of sufficiency:

- 3- $rot(\sigma) = 0$ and σ has at least one U and one down label $\Rightarrow \sigma$ has three consecutive labels U, A, D (U, C, D).
- Suppose that σ : σ '*UAD* . Let τ : σ '*UCD*, Hence:

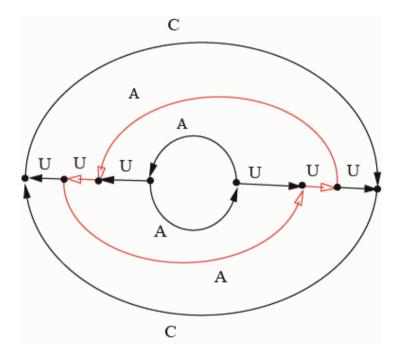
$$rot(\tau) = rot(\sigma) + turn(U, C) + turn(C, D) - turn(U, A) - turn(A, D) = 4$$

$$\tau \text{ has a type1 ortho-radial}$$
drawing in which this drawing can easily transform to a drawing of σ .

S-shape cycles and N-shape cycles

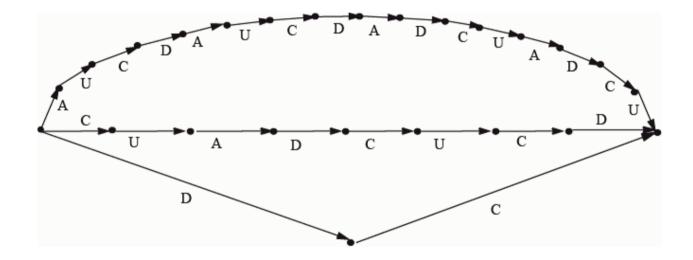
- I-shape cycle: A drawable C-shape cycle σ , is called an I-shape cycle if all labels of σ are A or σ contains a C-shape p ath U AD and $rot(\sigma) = 0$
- **E-shape cycle**: A drawable C-shape cycle σ , is called an E-shape cycle if all labels of σ are C or σ contains a C-shape path U CD and $rot(\sigma) = 0$

The drawabilty of C-shapes



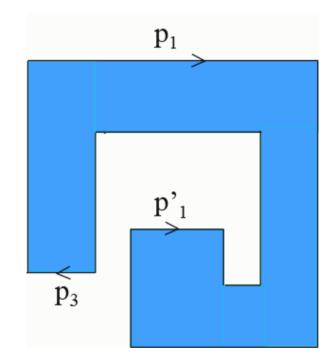
The C-shape of all its faces are drawable but it itself is not drawable

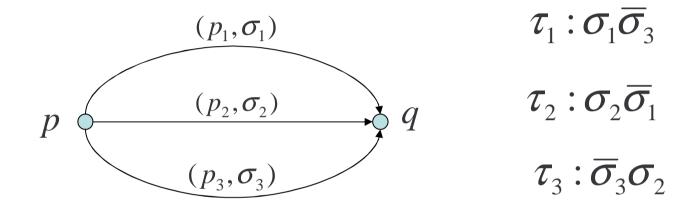
The drawabilty of C-shapes

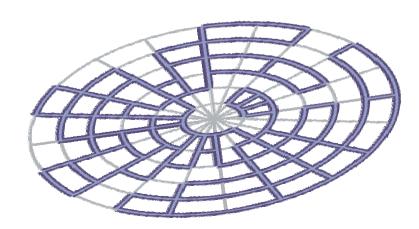


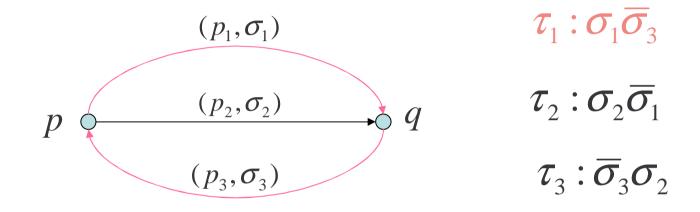
The C-shape of all its cycles are drawable but it itself is not drawable

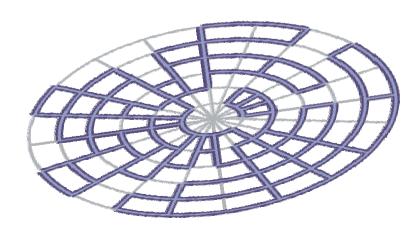
Admissible edges in a graph with given shape

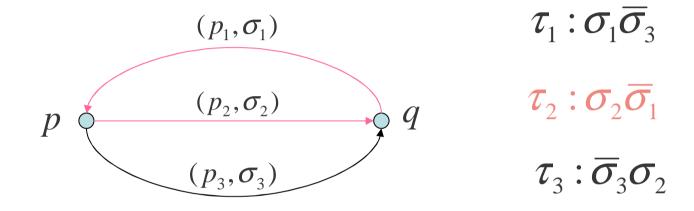


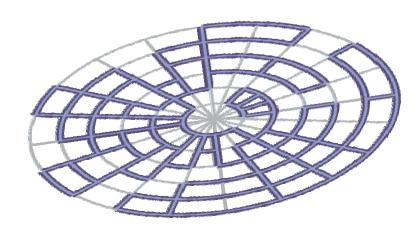


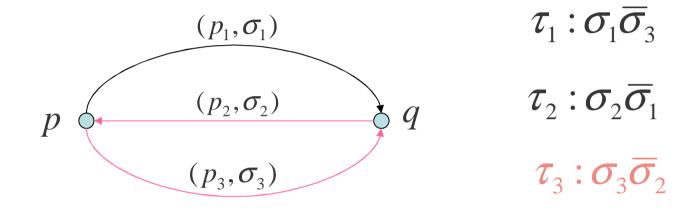


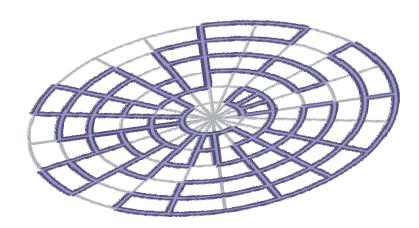




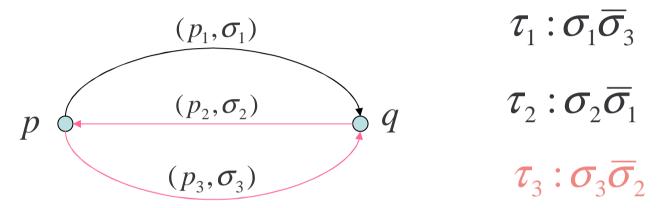








A theta graphs T with C-shape τ

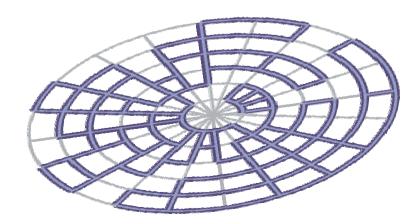


Suppose that:

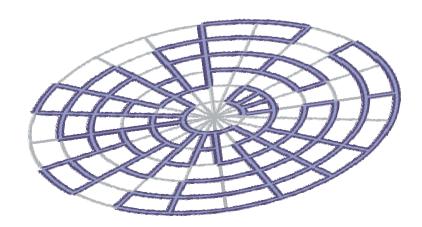
$$rot(\tau_2) = 4$$

 τ_1 be an E-shape cycle

 τ_{3be} an I-shape cycle

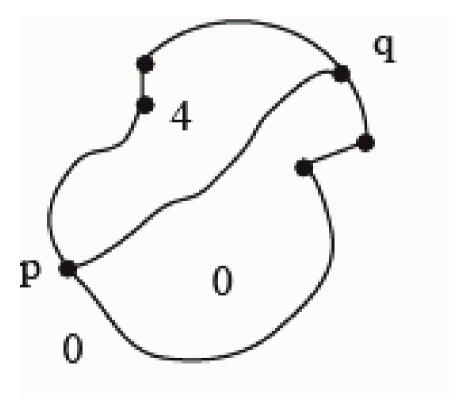


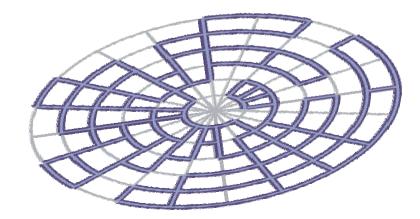
- **Theorem3**: A theta graph *T* with C-shape τ has a type2 ortho-radial drawing iff one of the following cases happens:
- \clubsuit . All labels of τ_1 are C.
- $\ensuremath{\oplus}$. All labels of $\ensuremath{\tau_2}\xspace$ are A .



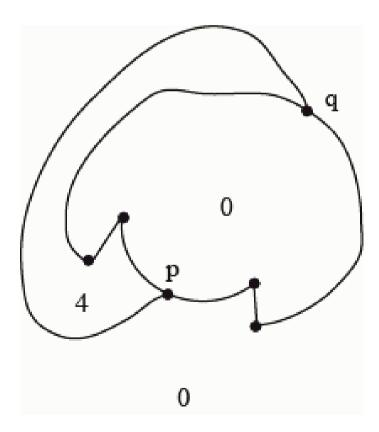
• τ_1 has a C-shape path UCD such that at least one of the darts of subpath labeled by C is on

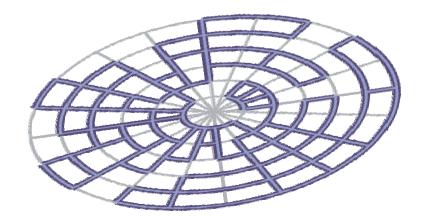
 p_3



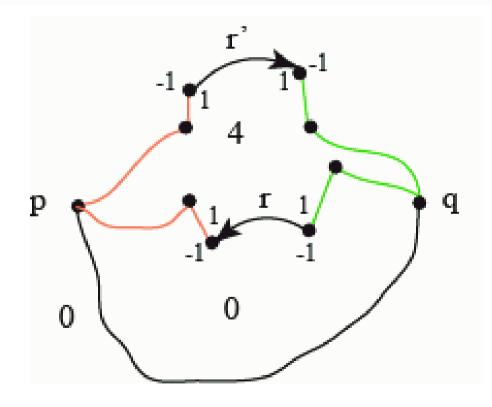


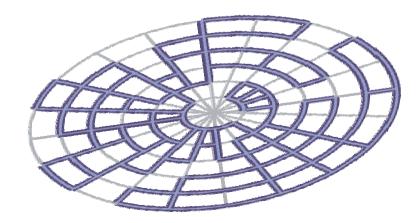
• τ_3 has a C-shape path *DAU* such that at least one of the darts of subpth labeled by *A* is on p_3





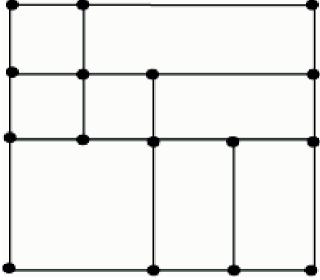
5. σ_2 has a C-shape path DCU and $\bar{\sigma_1}$ has a C-shape path UC_cD such that τ_2 is $\tau_{21}DCU\tau_{22}UC_cD\tau_{23}$ for some C-shape paths τ_{21} , τ_{22} and τ_{23} , and $rot(D\tau_{23}\tau_{21}U) = rot(D\tau_{22}U) = 0$.





Rectangular Drawing

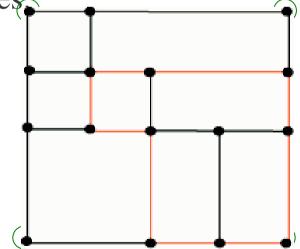
- A rectangular drawing of a plane graph G is a planar drawing of G where
- each vertex is drawn as a point,
- each edge is drawn as a vertical or horizontal segment and
- and each face is rectangular.



Rectangular Drawings

Let *G* be a plane graph with a rectangular drawing, than:

- The degree of each vertex is a most four.
- *G* is biconnected.
- *G* has at least four degree two vertices on the boundary of the external face to form the corners of external face.
- Each cycle of *G* is drawn as a polygon, so it should have at least four 90 degree angles



Rectangular Drawings

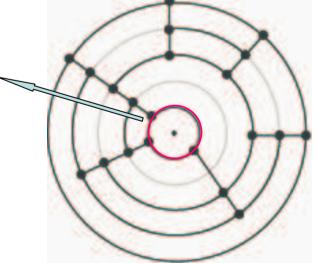
Rectangular drawings are studied in several papers:

- A necessary and sufficient condition is given for cubic plane graphs by Thomasson(1984) to have rectangular drawings.
- Rahman and et al.(1998-2004) have presented linear time algorithms to test graphs with maximum degree 3 to have rectangular drawings and find a rectangular drawing if one exists.
- Mura and et al (2006) found a polynomial time algorithm to test graphs with maximum degree 4 to have rectangular drawings and find a rectangular drawing if one exists.

Rectangular-Radial (RR) Drawing

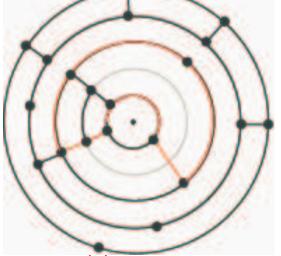
- An RR drawing of a plane graph G is a planar drawing of G where
- each vertex is drawn as a point,
- each edge is drawn as a circular or radial segment,
- each internal face not containing *S* is rectangular,
- And the external face and the internal face containing the center of the circles are circular.

We call the internal face containing the center of the circles the inner face.



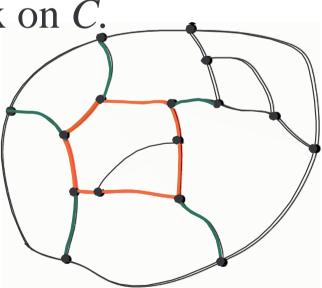
Rectangular drawings and (RR) Drawing

- 1- Vertices of degree two have no role in an RR drawing.
- 2-Biconnectivity is not necessary to have RR drawing.
- 3- Each cycle of *G* not containing the inner face is drawn as a polygon, so should have at least four 90 degree angles.



Legs

- Let G be a plane graph. For a cycle C of G, an edge e is called a leg of C if:
- 1- e is not a bridge of G,
- 2- e is out of C, and
- 3- e is incident to one vertex on C_{e}



Rectangular-Radial (RR) Drawing

Theorem: A cubic plane graph G with a prescribed face f has a rectangular drawing if and only if each cycle not containing the inner face has at least four legs.

