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Energy

� (Gutman, 1978) The energy of a graph G is 
defined as

� The singular values of a matrix A are the 
square roots of the eigenvalues of AA* and 
is denoted by                                 . If A is a 
hermitian matrix, then the singular values of 
A are the absolute values of its eigenvalues.
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Incidence Energy

� (Nikiforov, 2007) For any matrix A call the 
value                        the energy of A.

� Let be the singular values of 
the incidence matrix of a graph G, the 
quantity is called the incidence 
energy of the graph G.
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Example

� ( ) 2 .nIE S n n= − +



Energy & Incidence Energy

� , equality is attained iff G has no 
edges.

� , equality holds iff G has no edges.

� If the graph G consists of connected 
components  , then 
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Energy & Incidence Energy

Theorem: Let G be a graph, then
in which is the bipartite graph with adjacency 
matrix

The graph is the bipartite graph which is 
obtained from G by adding a vertex on each edge 
of G.
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Energy & Incidence Energy

� If the energy of a graph is rational, then it 
must be an even number.

� The incidence energy of a graph can not be 
an odd number.

�

� . Let G be any connected 
graph. If G is bipartite,                      
otherwise                           . 
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Energy & Incidence Energy

� Let G be a graph of order n with m edges. 
Then

With left equality holding iff m<2, and right 
equality holding iff m=0.
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Energy & Incidence Energy
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Energy & Incidence Energy

� Let H be an induced proper subgraph of a 
simple graph G. Then

� Let G be a graph and E be a non-empty 
subset of E(G), then 

� Among all graphs with n vertices, the 
complete graph is the only graph with 
maximum incidence energy.
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Energy & Incidence Energy

� Let e be any edge of G, then

� If  H is an induced subgraph of the graph G, 
then 

�
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Energy & Incidence Energy

� Let T be a tree with n vertices, which is 
not path, then        
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Any Question?


