

Low-Density Parity-Check Codes Construction and Combinatorial Designs

M.H. Tadayon tadayon@itrc.ac.ir Iran Telecommunication Research Center (ITRC) Oct. 2008

Outline

Block Codes

 Noisy Channel Coding Theorem (Shannon Theorem)

Low-Density Parity-Check (LDPC) Codes

Combinatorial Designs and LDPC Codes

Some properties

A Communication model

Cont.

Block Codes

- * [n, k]-code:

 A k dimensional subspace of F_q^n
- **⋄** M=n-k= Redundancy

Code Rate

$$R = \text{Code rate} = \frac{\text{Dimension}}{\text{Code length}} = \frac{k}{n}$$

Generator & Parity-Check Matrix

 $G: k \times n$ generator matrix, which $c = mG \in F_q^n$

$$C: (m_1, m_2, ..., m_k) \mapsto (c_1, c_2, ..., c_n)$$

$$(c_{1}, c_{2}, ..., c_{n}) = (m_{1}, m_{2}, ..., m_{k}) \times \begin{pmatrix} g_{11} & g_{12} & ... & g_{1n} \\ g_{21} & g_{22} & ... & g_{2n} \\ . & . & . & . \\ g_{k1} & g_{k2} & ... & g_{kn} \end{pmatrix}$$

*H: $(n-k)\times n$ parity-check matrix, such that $GH^T = 0$ in F_q

Example: [7, 4]-Hamming code

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$y \in C$$
 iff $yH^T=0$

Minimum Distance

d: Minimum distance (the minimum weight of codewords)

Theorem: Let d_{min} be the minimum distance of a code C. Then C is a t-error-correcting code if and only if $d_{min} \geq 2t + 1$.

Higher minimum distance = Stronger code

Finding minimum distance:

NP hard

Linear Block Codes

- * There are many practical linear block codes:
 - > Hamming codes
 - > Cyclic codes
 - > Reed-Solomon codes
 - > BCH codes

> ...

•But . . .

Shannon's Channel Coding Theorem

 In 1948, Claude Shannon published the paper: "A Mathematical Theory of Communications" which laid the foundations of Information Theory.

Noisy Channel Coding Theorem (Shannon Theorem)

$$x \in X$$
 $p(y|x)$ $y \in Y$

Mutual Information
$$I(X;Y) = \sum_{x,y} P(x,y) \log \frac{P(x \mid y)}{P(x)}$$

Channel Capacity
$$C = \max_{P(x)} I(X;Y) \frac{bits}{channel use}$$

$$\forall \ \varepsilon, \ \delta > 0, \ R: 0 < C - R < \varepsilon,$$
 a large length n code of rate R with $P_e < \delta$

Error Control Coding

- good codes
 - Low-complexity encoding and decoding
 - Can approach channel capacity with low probability of error decoding

Low-Density Parity-Check (LDPC) Codes

- Gallager 1963, Tanner 1984, MacKay 1996
 - Linear block codes with sparse (small fraction of ones) parity-check matrices
 - Have simple representation in terms of bipartite graphs
 - Simple and efficient iterative decoding in the form of belief propagation
 - A class of channel capacity (Shannon limit) approaching codes

Graphical Representation

Example:

$$H = \begin{pmatrix} 110100 \\ 011010 \\ 111001 \\ 001101 \end{pmatrix}$$

cycle of length 4

Variable nodes

LDPC codes construction types

Random-like codes

- Gallager (Low-density parity-check codes)
- Mackay (Near Shannon limit performance of LDPC codes)
- . . .

Structured codes

- Shu lin and . . . (Low-density parity-check codes based on finite geometries . . .)
- S. Johnson and . . . (Codes for iterative decoding from partial geometries)
- Fossorier (Quasi-cyclic low-density parity-check codes . . .)
- Vasic and . . . (Combinatorial constructions of LDPC codes. . .)
- Honary and . . . (Construction of LDPC codes based on BIBDs)

. . . .

Complexities Comparison

Code	Encoding	Decoding
Random Linear Code	O(n^2)	O(2n)
LDPC	O(n^2)	O(n) (Sum Product Algorithm)
Quasi-cyclic LDPC	O(n)	(Sum-Product Algorithm)

Decoding of linear codes: NP hard

Gallager Codes

$$H = \begin{bmatrix} H_1 \\ H_2 \\ \vdots \\ H_{\omega_c} \end{bmatrix}_{\mu w_c \times \mu w_r}$$

Where for $i=1,2,...,\mu$, the i-th row of submatrix H_1 contains of w_r 1's in columns (i-1) w_r +1 to iw_r and other submatrices are simply column permutation of H_1 .

Example: w_c=3, w_r=4

	\wedge																			
		1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
/[0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$W_r=4$	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
· r	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	$\stackrel{\circ}{1}$
		_	Ü	Ü	Ü	V	v	Ü	Ü	Ü	Ü	Ü	Ü	Ü	v	v			_	_
	1	C	(3		av	yb.		<i>1</i> 105	-	Ω	n	Ω	7	Ω	Ω	Ω	Ω	0	0	0
	1	-g	()	וע					1. 	-E	1.7 206	N.		U n	O.	. U	U			Ŭ
7.7	0	.m.	-4	- U			at!)	16	yc		2 / IIV	า∖่⊦	1.	() /\	()	1.	0	0	0
H =	0		1	()	OJ.		Arı	JU	t (U	y	100) (II)			()	()	U	1	0	0
	0	(carrier	of the second		96	200		din		CO	m	ole	ıyı	ˈ	, il			0	1	0
	0	O	0	0	0				19	9			1	7			0	0	0	1
	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0
	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0
	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0
$W_c=3$	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
																				٦

Mackay Codes

- >H is created randomly
 - generating weight-w_c columns and (as near as possible) uniform row weight
 - ➤ generating weight-w_c columns, while ensuring weight-w_r rows, and no two columns having overlap greater than one(avoid cycle of length 4)
- Drawback: lack sufficient structure to enable low-complexity encoding

Example: $w_c=3$, n=20, n-k=10

Combinatorial Designs and LDPC Codes

STS (v) & LDPC Mackay and S. Johnson Codes

Example: STS(7) or 2- (7, 3, 1)

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$$

$$B_1 = \{x_1, x_2, x_4\}$$

$$B_2 = \{x_2, x_3, x_5\}$$

$$B_3 = \{x_3, x_4, x_6\}$$

$$B_4 = \{x_4, x_5, x_7\}$$

$$B_5 = \{x_1, x_5, x_6\}$$

$$B_6$$

$$Color 2008$$

$$B_1 = \{x_1, x_2, x_4\}$$

$$B_2 = \{x_2, x_3, x_5\}$$

$$Color 2008$$

$$B_3 = \{x_3, x_4, x_6\}$$

$$B_4 = \{x_4, x_5, x_7\}$$

$$Color 2008$$

$$B_1 = \{x_1, x_2, x_4\}$$

$$Color 2008$$

$$B_2 = \{x_2, x_3, x_5\}$$

$$Color 2008$$

$$B_3 = \{x_3, x_4, x_6\}$$

$$Color 2008$$

$$B_4 = \{x_4, x_5, x_7\}$$

$$Color 2008$$

$$B_1 = \{x_1, x_2, x_4\}$$

$$Color 2008$$

$$B_2 = \{x_2, x_3, x_5\}$$

$$Color 2008$$

$$B_3 = \{x_3, x_4, x_6\}$$

$$Color 2008$$

$$Color 2008$$

Euclidian Geometries & LDPC

Shu lin and . . .

- Let p be a prime. Given two integers m≥2 and s≥1, the m-dimensional Euclidian geometry EG(m, p^s) over GF(p^s) consits of points, lines and hyperplanes (μ-flats).
 - A μ -flat is a μ -dimentional, $0 \le \mu \le m$, subspace of the points of $EG(m, p^s)$ over $GF(p^s)$.
 - A μ-flat has p^{μs} points.
 - A point is a 0-flat and a line is a 1-flat.
 - A line contains ps points
 - In $EG(m, p^s)$ there are $p^{(m-1)s}(p^{ms}-1)/(p^s-1)$ lines and every point is the intersection of $(p^{ms}-1)/(p^s-1)$ lines
 - The set of points and lines of EG(m, p^s) form a 2-(p^{ms}, p^s, 1) BIBD

Example:

• Consider the 2-dimentional Euclidean geometry EG(2, 2²). Let α be a primitive element of $F_{2^{\infty}}$. The incident vector for the line $L = \{\alpha^7, \alpha^8, \alpha^{10}, \alpha^{14}\}$ is $(0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 1)$. The vector and its 14 cyclic shifts form the parity check

matrix H.

H=

Cycle shifts of The first row

October 2008

Cyclic LDPC

Low-complexity

encoding

Affine planes & LDPC Shu lin and . . .

- Any 2-(n², n, 1) design is called an affine plane of order n, denoted Aff(n).
 - One line contains n points;
 - One point belongs to exactly n+1 lines;
 - Every line contains n points;
 - There are exactly n² points in Aff(n);
 - There are exactly n²+n lines in Aff(n);
- For any prime power q there exists an affine plane of order q.

Example: Aff(n=3)

Projective planes Shu lin and . . .

- A 2-(n²+n+1, n+1, 1) design is called a projective plane of order n, denoted by Pr(n).
 - One line contains n+1 points;
 - One point belongs to exactly n+1 lines;
 - Every line contains n+1 points;
 - There are exactly n²+n+1 points in Pr(n);
 - There are exactly n²+n+1 lines in Pr(n);

Example: Pr(n=3).

October 2008

Quasi Cyclic LDPC codes

(1, 2)-Configuration & LDPC

- A (1, 2)-Configuration is an incidence structure D=(P, B) for which there are two integers γ and ρ such that:

 (1, 2)-Configuration
 - Each block contains γ points;
 - Every pair of points lie on at most one block
- A (1, 2)-Configuration is called regular if every point lies on precisely ρ blocks.

October 2008 tadayon@itrc.ac.ir

Why (1, 2)-configuration?

- Constructed LDPC codes have girth at least 6.
- Minimum distance of constructed LDPC codes is at least γ+1.
- Constructed LDPC codes have a good structure and can be represented as a cyclic or quasi-cyclic code

Integer Lattices Vasic and . . .

Integer lattices:

L($\gamma \times q$)={(x, y): $0 \le x \le \gamma-1$, $0 \le y \le q-1$ }, $\gamma \le q$ and γ , q are nonnegative integers.

Integer Lattice designs

The line l_s(a) with slope 0≤ s ≤ q-1 and passing through the point (0, a) is defined by:

 $\ell_s(a) = \{(x, sx + a \pmod{q},): 0 \le x \le \gamma - 1\}$

L(γ, q)

Ovq points

oq² lines

oany line contains γ

points

oeach point is in the intersection of q lines

o(1, 2)-configuration

c.ir

slope s=1 Lines with slope s=0

Lines with

Matrix representation

• Example: Lattice L(3,5)≡ Array (γ=3, q=5)

$$\mathbf{P} = \mathbf{P}^{1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

QC-LDPC

$$\mathbf{H}_{Latt(3,5)} = \begin{vmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{P} & \mathbf{P}^2 & \mathbf{P}^3 & \mathbf{P}^4 \\ \mathbf{I} & \mathbf{P}^2 & \mathbf{P}^4 & \mathbf{P}^6 & \mathbf{P}^8 \end{vmatrix}$$

October 200

Noisy Channels

Binary symmetric channel BSC (p)

Binary erasure channel BEC (ε)

AWGN (Additive White Gaussian Noise) channel

c a codeword, η~ normal (µ=0, σ²), y received word

Stopping Sets (a problem in binary erasure channels)

- A stopping set is a subset S of the variable nodes in Tanner graph of code C such that all the neighbors of S are connected to S at least twice.
- The size of the smallest non-empty stopping sets of code C is called the stopping distance

Finding stopping distance:
NP hard

Example: [7,4]-Hamming code

Stopping set

Iterative Decoding

- Hard Decision (passing of messages between variable nodes and check nodes are 0 or 1)
 - Bit-Flipping Algorithm (BFA)
- Soft Decision (passing of messages between variable nodes and check nodes are probabilistic)
 - Sum-Product Algorithm (SPA)
- Iterative decoding is optimal only if the code graph has no cycles
 - Want: to make girth (smallest cycle length) as large as possible;
 - Number of cycles of short length as small as possible;

cycle of length 4

An example of Check and Variable nodes update (BFA)

$$c_{1}^{T}=0$$
 $c_{1}^{T}+c_{2}^{T}+c_{4}^{T}=0$
 $c_{2}^{T}+c_{3}^{T}+c_{5}^{T}=0$
 $c_{1}^{T}+c_{2}^{T}+c_{5}^{T}=0$
 $c_{3}^{T}+c_{4}^{T}+c_{6}^{T}=0$

October 2008

tadayon@itrc.ac.ir

An example of Check and Variable nodes update (BFA)

More Decoding

Performance

References

- H. Pishro-Nik, "Modern Coding Theory: LDPC Codes".
- O. Milenkovic, "On The Analysis And Application Of LDPC Codes".
- A. Gomilko, "Turbo Codes overview".

Thank You