


Low-Density Parity-Check Codes
Construction and Combinatorial
Designs

M.H. Tadayon
tadayon@itrc.ac.ir

Iran Telecommunication Research Center (ITRC)
Oct. 2008




Outline

- Block Codes

- Noisy Channel Coding Theorem (Shannon
Theorem)

« Low-Density Parity-Check (LDPC) Codes

« Combinatorial Designs and LDPC Codes

« Some properties

October 2008 tadayon@itrc.ac.ir




A Communication model

Source Encoder

Telephone line, mobile
cellular telephony,
microwave and satellite
links, flash memory,
compact discs

Destination Decoder
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Received bits




Sector

010101011110010101001
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Block Codes

[n, k]-code:

A k dimensional subspace of
M=n-k= Redundancy
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Code Rate

R = Coderate= w :E
Codelength n
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Generator & Parity-Check Matrix
G: kxn generatorn matrix, which

H: (n-k)xn parity-check matrix, such that GH" =0 in F,
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Minimum Distance

d: Minimum distance (the minimum weight of
codewords)

T heorem: Let d,,,;, be the minimum distance
of a code C. Then C is a t-error-correcting
code if and only if d,,;,, > 2t + 1.

Higher minimum distance = Stronger code

Finding minimum distance:
NP hard
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L inear Block Codes

s There are many practical linear block codes.
> Hamming codes
> Cyclic codes
> Reed-Solomon codes
» BCH codes

> " BN
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Shannon’s Channel Coding
Theorem

« In 1948, Claude Shannon published the paper: “A Mathematical
Theory of Communications” which laid the foundations of
Information Theory.
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(Shannon Theorem)

S - B

Mutual Information 1(X;Y)=>" P(xy)log PI(D>E|)Y)
) X

Channel Capacity C = maXp, 1 (X;Y) bitschannd use

V£0>0R:0<C-R<eg,
a large length n code of rate R with P, <o
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Error Control Coding

= good codes
» Low-complexity encoding and

decoding

» Can approach channel capacity with
low probability of error decoding

October 2008




+ Gallager 1963, Tanner 1984, MacKay 1996

~ Linear block codes with sparse (small fraction
of ones) parity-check matrices

~ Have simple representation in terms of
bipartite graphs

- Simple and efficient iterative decoding in the
form of belief propagation

~ A class of channel capacity (Shannon limit)
approaching codes
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Graphical

Example :

-

o

C,+C,+C3+Cs=0
C;+C,+C5=0

Check nodes

Variable nodes
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LDPC

« Random-like codes
« Gallager (Low-density parity-check codes)
= Mackay (Near Shannon limit performance of LDPC codes )

« Structured codes

Shu lin and . . . (Low-density parity-check codes based on finite
geometries . . .)

S. Johnson and . . . (Codes for iterative decoding from partial
geometries )

Fossorier (Quasi-cyclic low-density parity-check codes . . .)
Vasic and . . . (Combinatorial constructions of LDPC codes. . .)
Honary and . . . (Construction of LDPC codes based on BIBDs)
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Where for 1=1,2,...,4, the i-th row of submatrix H;
contains of w, 1's in columns (I-1)w, +1 to iw,
and other submatrices are simply column
permutation of H,.
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IH IS created randomly

» generating weight-w,. columns and (as near
as possible) uniform row weight

» generating weight-w, columns, while ensuring

weight-w, rows, and no two columns having
overlap greater than one( avoid cycle of
length 4)

Drawback: lack sufficient structure to
enable low-complexity encoding
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Example:

//61000001100000111100>%

01001001100010010001
10100100010101000101
00010100001000100100 as near as
00110100100000000010 possible uniform
11000010011100000001 row weight
10011010000000001000

00101000010011100000
00000011000110100010 -
\\00000000001001011010
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STS (v) & LDPC
and




Example: STS(7) or 2- (7, 3, 1)

Xy X, X, XA

Blz{xl’xz1x4} Bzz{ fy X3, } 3:{X3’X4’X6} B4={X4,X5,X7}
_ Drawback
BS—{XPXS,XG}
" slength and rate

egenerating several
family of codes
1 1 U

0

1
0
1
0

0 Ox.
0 0
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Euclidian Geometries & LDPC

« Let p be a prime. Given two integers m=2 and s=21,
the m-dimensional Euclidian geometry EG(m, p®)
over GF(p®) consits of points, lines and
hyperplanes (u-flats).

« A p-flat is a p-dimentional, O<suys=m, subspace of the
points of EG(m, p%) over GF(p?®) .

« A p-flat has p*s points.
« A point is a O-flat and a line is a 1-flat.
= A line contains p® points

= In EG(m, ps) there are p(™M-Ys(pms-1)/(ps-1) lines and
every point is the intersection of (p™s-1)/(ps-1) lines

The set of points and lines of EG(m, p®) form a 2-(p™s,
ps, 1) BIBD
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Example:

+ Consider the 2-dimentional Euclidean geometry EG(2, 22).
Let a be a primitive element of . The incident vector for
the line [t AR E iS(00000001101000 1).
The vector and its 14 cyclic shifts form the parity check

matrix H.
ﬁoooooouowom\

Cyclic LDPC
Low-complexity
encoding
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Affine planes & LDPC

« Any 2-(n?4, n, 1) design is called an affine
plane of order n, denoted Aff(n).
= One line contains n points;

= One point belongs to exactly n+1 lines;
=« Every line contains n points;

= There are exactly nZ points in Aff(n);

= There are exactly n2+n lines in Aff(n);

« For any prime power g there exists an
affine plane of order g.
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Projective planes

- A 2-(n“tn+1, n+1, 1) design is called a projective
plane of order n, denoted by Pr(n).
= One line contains n+1 points;
= One point belongs to exactly n+1 lines;
= Every line contains n+1 points;
= There are exactly n2+n+1 points in Pr(n);
= There are exactly n2+n+1 lines in Pr(n);
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Quasi Cyclic LDPC codes
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(1, 2)-Configuration & LDPC

« A (1, 2)-Configuration Is an Incidence
structure D=(P,
Integers y and 4
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Why (1, 2)-configuration?

« Constructed LDPC codes have

of constructed LDPC
codes iIs

« Constructed LDPC codes have a good
structure and can be represented as a
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Integer Lattices

- Integer lattices:

L(yxa)={(X, y): 0= x = y-1,
O<y<g-1}, y=q and y, q
are nonnegative integers.
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Integer Lattice designs

« The line {,(a) with slope O=s s = g-1
and passing through the point

(0, a) Is defined by:

@vq points

@q? lines

@any line contains y
points

@each pointis in
the intersection of g
lines

October 2008 @(1, 2)-configuration

Lines with
slope s=1

Lines with
slope s=0
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Noisy Channels

Information bits I Corrupted bits

Binary symmetric channel BSC (p) Binary erasure channel BEC ()
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AWGN (Additive White Gaussian Noise) channel

* ¢ a codeword, N~ normal (u=0, 62), y received word

y=c +

—e
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Stopping Sets
(& problem;in binary erasure channels)

« A stopping set isa
In Tanner graph of code C such that

« The size of the
IS called the

Finding stopping distance:
NP hard
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Example: [7,4]-Hamming code




lterative Decoding

(passing of messages between variable
nodes and check nedes are 0 or 1)

= Bit-Flipping Algorithm (BFA)
(passing of messages between variable
noedes and check nedes are probabilistic)

« Sum-Froduct Algorithm (SPA)
« |terative decoding is optimal only if the code graph has

no cycles
= Want smallest cycle length

= Number of cycles short length

October 2008 tadayon@itrc.ac.ir




-
O
-

O

D
i

D
©

-

@)

-

-

()]
(-

@)

-

@)
=

M
i’

-

D)

n

(D)

| -

o

(D)

-
L

O

q8)

-

@))
<

Codeword

October 2008




An example of Check and Variable nodes
update (BFA)

c=001011

>

C,+C,+C3+Cs=0
C;+C,+C=0
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Noise

Channel

[ r=101011 |
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An example of Check and Variable nodes
update (BFA)

« \/ariable update

N Nesices

« Parity update

®
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More Decoding

Posterior

probabilities variables variables

Processing
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Performance

X =B= Mackay (4376,4095) |-
-] =0= Bose (4446.4281) |-

4 Bose (4350 ,4137)

=~ Bose (4455 4032)

£
o]
o
—_
g
(Im}
=
m

E,/N,[dB]
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