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Hermitian Matrices,
Eigenvalue Multiplicities and
Eigenvector Components




Because of the interlacing inequalities, |m () — ma)(A)] < 1,
and all 3 values of |m 4 (X\)—m4zy(N)| are possible. We call the index

i a Parter (resp., downer, neutral ) index if |m 4 (X)) —mau(N)| = —1
(resp., 1, 0). In the event that the graph of A becomes relevant,
recall that G(A) is the graph on n vertices in which there is an edge

between 7 and 7 if and only if the 7, 7 entry of A is nonzero.

If ma(A) > 1, denote the corresponding eigenspace by FE ().
If m4(A) = 0, then we may, for convenience, adopt the convention

that F4(\) contains only the zero vector.



Theorem:(PW-theorem)

Let 1" be a tree on n vertices and suppose that A € R 1s such that
ma(A) > 2. Then, there is a vertex i of 1" such that m;)(\) =
ma(A) + 1.

For trees, a useful characterization of when a vertex 1s Parter was

demonstrated.
Theorem:

Let T be a tree, and v a vertex of T, ma(v)(A) = ma(\) 4+ 1 if and

only if there 1s a downer branch at v for .



Definition:

In the event that entry 7 of = is 0 for every x € E4(\), we say that
i 1s a null vertex (for A and \); otherwise 7 is a nonzero vertex.

When i is a null vertex, the structure of F4(\) imparts a good deal

of information about E4.;(\). Suppose, w.l.o.g., that n = i:

R

Then, A(n)x = Ax. This implies, in particular, that a null vertex
1s, at least, neutral. The converse 1s also valid.



Lemma 1:

For an n-by-n Hermitian matrix A and an identified A € R, we have

the following:
1. If 7 is downer, then E4(X) D Eau(A).
2. If 7 is neutral, then E4(\) = Eapy(A).
3. If 7 is Parter, then E4(\) C Eapy(N).

Proof:

Assume w.l.o.g. that i = n and A = 0, and use the block decompo-

sition of A shown in above.



If a is a linear combination of the rows of A(n), then

E4(0) 2 Eau(0)

If @ is not a linear combination of the rows of A(n), then sequentially

aﬂﬂ)
increases the rank each time. Thus, rankA = rankA(n) + 2, so n

extending A(n) by the row a and then by the column (a.*

1s Parter.

Therefore, if n is downer or neutral, E4(0) O E44,)(0). By defini-
tion, if n 18 downer, the contaimnment 1s strict, and if n 1s neutral,
the containment 1s actually equality:.



Suppose n is Parter. Let X be the maximal subspace of E4(,)(0)
that is orthogonal to (a.* 0)*:. Clearly, X C E4(0). Since dimX >
mam)(0) =1 =m4(0), we have X = E4(0).

Theorem 1:

Let A be an n-by-n Hermitian matrix. Then, index 7 1s null for A

if and only 1f index 7 1s either Parter or neutral.



Distinguishing Parter and neutral

Lemma 2:

If n 1s a null vertex, then n 1s neutral if and only if £ A(n_)()\) 1S

orthogonal to a.

Proof:

By Lemma 1, E4(A) 2 Epm)(A). In fact, E4(\) is precisely the
maximal subspace of £4(,)(\) that is orthogonal to [a* 0} " Thus,
n is neutral if and only if E4(\) = E4xn,)(A) if and only if E ) ()
1s orthogonal to a.



Lemma 3:

Suppose that the graph of A is a tree and that n i1s a null vertex

for some A € R. The following statements are equivalent.

1. n 1s neutral.

2. All neighbors of n are null for A(n).

Example:

In fact, if the graph of A is not a tree, then a neutral vertex  may
be adjacent to a vertex j that is nonzero for A(n). Consider
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Vertex 3 i1s neutral for the eigenvalue 0, and vertices 1 and 2 are

nonzero for A(n).

Theorem 2:

Let A be an Hermitian matrix whose graph is a tree, and let 7 be a
null vertex for A. Then 7 1s Parter if and only if there i1s a neighbor
7 that is nonzero for A(i).



Corollary 1:

Suppose that the graph of A is a tree. Every neighbor of a neutral

vertex 1s a null vertex for A.

Proof:

By the theorem, if 2 1s neutral, then every neighbor of 2z 1s null for
A(z). Because E4(\) = E4;)()\), every vertex that is null for A(z)

1s also null for A.



Implications

Lemma 4:

Let A be an n-by-n Hermitian matrix. If 2 is neutral, then j # 7 is

downer for A if and only if j is downer for A(7).

Proof:
If 7 is neutral, then E4(\) = E;)(A), which implies that j is

nonzero for A if and only if j is nonzero for A(z).

Lemma 5:

Let A be an n-by-n Hermitian matrix. If 7 is Parter and 7 is downer
(for A and \), then 7 is also downer for A(i) and .



Vertex classification

Proposition 1:

Let A be an n-by-n Hermitian matrix. If m4(A) = m, then A has

at least m downer vertices.

Proof:

Assume m > 1. Because dimFE 4(\) = m, there is some vector in
E 4(\) that has at least m nonzero entries. These entries identify
downer vertices.



Proposition 2:

Suppose that the graph of A is connected. If m4(\) = m > 1, then
A has at least m + 1 downer vertices.

Proof:

By Proposition 1, A has at lcast m nonzero vertices. Supposc A
has exactly m nonzero vertices. Then E4(\) is spanned by vectors
€iys. .. 6, , where e; 1s the jth standard basis vector for C". Since
(A — Al)e; = 0 implies the jth column of A — Al is zero, the graph
of A 1s not connected.



Example:

A star is a graph that is a tree and has exactly one vertex of degree
> 1. If the graph of A is the star on n vertices, and every diagonal
entry of A is A, then m4(A) = n — 2. Also, the central vertex
is Parter, and every pendant vertex is a downer vertex, so A has
exactly ma(A) + 1 downer vertices. Therefore, Proposition 2 is the

strongest statement that can be made for all connected graphs.

Proposition 3:

Suppose that the graph of A is a tree, and let 2 be a neutral vertex.
Then every neighbor of ¢ 1s either Parter or neutral for A.



Classification of vertex pairs

Proposition 4:

Let A be an n-by-n Hermitian matrix, and let 2 and 7 be distinct
indices. We have the following three statements.

1. If 7 and j are Parter, then ma(\) — maqi p(A) € {=2,0}.
2. If 7 and j are neutral, then m.4(A) — maqipn(A) € {—1,0}.

3. If 2 is neutral and j is downer, then m4(\) —m 41 (A) = 1.



Prootf:

1. Clearly, if 2 and 7 are Parter vertices, then

—2 < ma(A) — maqin(A) < 0.

Suppose that the difference 1s —1, for the sake of contradiction.
Assuming w.l.o.g. that our eigenvalue A equals 0 and that z = n—1

and 7 = n, we write

_A({ﬂ- o lr ?’1}) a1 n—1 a1n ]

® p—1 n—1 p— 1.n

X X a"ﬂ;ﬂ-

where the entries marked * are determined by the Hermicity of A.



By our assumption that ma(\) — maqu—1.})(A) = —1, it follows
that n—1 is neutral for A(n) and that n is neutral for A(n—1), and
therefore a; ,,_; and a; , are linear combinations of the columns of

A({n — 1,n}). Hence,

rankA < rank [A({n — 1,n}) a1, 1 ay,|+2=rankA({n—1,n})+2,
5o that
ma(0) = n—rank(A) > (n—=2)—rankA({n—1,n}) = magn-1,,1)(0),

contradicting the assumption that m.a(A) — man_1.)(A) = —1.



2. By Lemma 4, if 2 and 7 are neutral, then j i1s Parter or neutral

for A(7).

3. By the same lemma, 1if 2 1s neutral and 7 1s downer, then j is

downer for A(i).

Proposition 5:

Suppose that the graph of A 1s a tree, and let 7 and 7 be neighbors.

We have the following two statements.
1. If i and j are neutral, then my(A) — mai 1 (A) = 0.
2. If 7 and j are downer, then m.a(X) — myq n(A) =1



Proof:

1. By Proposition 4, if 7 and j are neutral, then

ma(\) — maqijn(A) € {—1,0}.

Suppose 1m.4(A) — ma; 1) (A) = —1. Then j is Parter in A(i), so j
is adjacent to a vertex k which is downer for A({z,j}). But then £
must also be a downer in A(7) since ¢ and j are adjacent. It follows

that j 1s Parter for A- a contradiction.



Example:

We will show that if + and 7 are not adjacent, then the conclusions

of Proposition 5 may not hold.
Take A = 0 and let

01 0
B=11 01
011

mp(0) = 1 and mp)(0) = mp)(0) = 0, so the pendant vertices
are downer vertices. However, in contrast to claim 2 of Proposition

5? mB(U) — mB({lrg})(U) = 0.




i i mald) = myg ()
Parter | Parter -2, 0
Parter | Neutral -1,0
Parter | Downer 0
Neutral | Neutral -1,0
Neutral | Downer 1
Downer | Downer 0,1,2

i o | mald) = myg A
Parter | Parter -2,0
Parter | Neutral -1, 0
Parter | Downer 0
Neutral | Neutral 0
Neutral | Downer not possible
Downer | Downer 1




