# On the Dynamic Chromatic Number of Graphs

Maryam Ghanbari

Joint Work with S. Akbari and S. Jahanbekam Sharif University of Technology m\_phonix@math.sharif.ir

#### 1. Introduction

Let G be a graph. A vertex coloring of G is a function  $c: V(G) \rightarrow L$ , where L is a set with this property: if  $u, v \in V(G)$  are adjacent, then c(u) and c(v) are different.

A vertex k-coloring is a proper vertex coloring with |L|=k.

A proper vertex k-coloring of a graph G is called **dynamic** if for every vertex v with degree at least 2, the neighbors of v receive at least two different colors. The smallest integer k such that G has a k-dynamic coloring is called the **dynamic chromatic number of G** and denoted by  $\chi_2(G)$ .



 $\chi_2(K_{1,1})=2$ 

 $\chi_2(K_{1,m})=3$ 



 $\chi_2(K_{m,n})=4$ 

 $m, n \ge 2$ 



#### Some Theorems

#### **Theorem 1.** Let G be a connected, non-trivial Graph. Then $\chi_2(K_2) = 2$ and otherwise $\chi_2(G) \ge 3$ .

Brook's Theorem.

For every graph G,  $\chi(G) \leq \Delta(G) + 1$ .

**Theorem 2.** If  $\Delta(G) \leq 3$ , then  $\chi_2(G) \leq 4$ , with the only exception that  $G = C_5$ , in which case  $\chi_2(G) = 5$ .

**Theorem 3.** If  $\Delta(G) \ge 3$ , then  $\chi_2(G) \le \Delta(G) + 1$ .

### **Theorem 4.** If $\alpha(G)$ be the length of the longest cycle in G, then $\chi(G) \le \alpha(G)$ .

Also we have,  $\chi_2(G) \leq \alpha(G)$ .

**Theorem 5.** A well-known upper bound for  $\chi(G)$ in terms of the length l(G) of the longest path in G is  $\chi(G) \leq l(G)+1$ .

Also, for any graph G,  $\chi_2(G) \leq l(G)+1$ .

2. The Dynamic Chromatic Number of Bipartite Graphs

First we show that the dynamic chromatic number of a bipartite graph can be sufficiently large.

## **Theorem 6.** For any k-regular bipartite graph $G, k \ge 3$ , if $n \le 2^k$ , then $\chi_2(G) \le 4$ .

By Montgomery (2001)

**Theorem 7.** Let G be a k-regular bipartite graph where  $k \ge 4$ . Then there is a 4-dynamic coloring of G, using 2 colors in each part.

Proof by Alon.

In the following, it is shown that there are some 3-regular bipartite graphs with no 4-dynamic coloring using two colors in each part. *Consider the following example:* 

Let  $F = \{123, 147, 156, 367, 345, 257, 246\}$  be the lines of a Fano Plane. We define a 3-regular bipartite graph of order 14 named G by two parts A and B. The Part A contains all lines of F as its vertices and the Part B contains numbers 1, 2, 3, 4, 5, 6, 7 as its vertices. We join  $i \in B$  to the vertex xyz of A, if and only if  $i \in \{x, y, z\}$ .



<u>Conjecture</u>: (Montgomery 2001)

#### For every regular graph G, $\chi_2(G) - \chi(G) \le 2$ .

The previous theorem shows that conjecture is true for bipartite regular graphs.

**Theorem 8**. Let G be a bipartite graph with parts A and B, and suppose that the length of each cycle of G is divisible by 4. Then one can color the vertices of A by two colors, and those of B by two colors so that every vertex of degree at least 2 has neighbors of two colors.

*Sketch of proof*. We show that B has a 2-coloring so that each vertex of A of degree at least 2 has neighbors of both colors, the result for coloring A is symmetric...

### *Lemma 9.* Let G be a bipartite graph such that for every $u, v \in V(G)$ , $|N(u) \cap N(v)| \neq 1$ . Then $\chi_2(G) \leq 4$ .

3. On the Dynamic Chromatic Number of Graphs Whose the Length of Each Cycle Are Divisible by L.

**Lemma 10.** Let G be a graph and  $l \ge 3$  be a natural number. If the length of each cycle of G is divisible by l, then for any  $e \in E(G)$ , there exists  $e' \in E(G)$  such that  $\{e, e'\}$  is an edge cut for G. **Theorem 11.** If G is a graph such that the length of every cycle of G is divisible by 3, then  $\chi_2(G) \le 3$ . Moreover, if one of the components of G is neither  $K_1$  nor  $K_2$ , then  $\chi_2(G) = 3$ . *Sketch of proof.* By induction on |V(G)|, we prove the *theorem.* 

If  $\delta(G) = 1$ , and  $v \in V(G)$  is a pendant vertex, then by induction hypothesis  $\chi_2(G \setminus v) \leq 3$ , and so  $\chi_2(G) \leq 3$ .

Thus we can assume that  $\delta(G) \ge 2$ .

Now, three cases can be considered:

Case1. The graph G has two adjacent vertices of degree 2.

Case 2. There are two adjacent vertices of degree at least 3, say u and v which e=uv. Suppose that {e,e'} is the edge-cut of G.

*First suppose that e and e' are not incident. Now, suppose that e and e' are incident.* 

Case 3. All vertices of degree at least 3 and all vertices of degree 2 form two independent sets.

**Theorem 12.** Let G be a graph whose none of the components is isomorphic to  $C_5$ . If p is an odd prime and the length of each cycle of G is divisible by p, then  $\chi_2(G) \leq 4$ .

Sketch of proof. The proof is based on induction on n = |V(G)|. If one of the components of G is a cycle, then by induction and noting that  $\chi_2(C_n) \le 4$ , for  $n \ne 5$  then we have  $\chi_2(G) \le 4$ .

Hence suppose that no component of G is a cycle.

If n = 1 or  $\delta(G) = 1$ , then the result is obvious.

Thus we assume that  $\delta(G) \ge 2$ .

Three cases can be considered:

Case 1. There are two adjacent vertices of degree 2.

Case 2. There are two adjacent vertices of degree at least 3. First assume that e and e' are not incident. Next suppose that e and e' are incident.

Case 3. In this case we can assume that all vertices of degree at least 3 form an independent set.

#### Conjecture:

Let G be a graph with  $\delta(G) \ge 2$ . If  $l \ne 4$  is a natural number and the length of every cycle of G is divisible by l, then G has at least two adjacent vertices of degree 2.

#### Bondy, 1998

With the exception of  $K_1$  and  $K_2$  every simple graph having at most two vertices of degree less than three contains two cycles whose lengths differ by one or two. **Corollary 13.** Let G be a graph and  $l \ge 3$  be a natural number. If the length of every cycle of G is divisible by l and G has no component isomorphic to  $C_5$ , then  $\chi_2(G) \le 4$ .

**Proof.** Apply Lemma 10 and Theorem 12.

**Theorem 14.** Let G be a graph and  $l \ge 2$  be a natural number. If the length of every cycle of G is divisible by l, then  $\chi(G) \le 3$ .

**Proof.** If 2/l, then G is bipartite and  $\chi(G) \le 2$ . Otherwise, by Lemma 10,G has an edge cut of size 2. Now, by induction on The vertices, it is not hard to see that  $\chi(G) \le 3$ .

# Thanks for your attention