On the \mathcal{D} -equivalence Class of Complete Bipartite Graphs

Ghodratollah Aalipour-Hafshejani

Sharif University of Technology Iran

Let G be a simple graph of order n. We mean by dominating set, a set $S \subseteq V(G)$ such that every vertex of G is either in S or adjacent to a vertex in S. The domination polynomial of G is the polynomial $\sum_{i=1}^{n} d(G,i)x^{i}$, where d(G,i) is the number of dominating sets of G of size i. Two graphs G and H are said to be \mathcal{D} -equivalent, written $G \sim H$, if D(G,x) = D(H,x). The \mathcal{D} -equivalence class of G is $[G] = \{H \mid H \sim G\}$. Recently, the determination of \mathcal{D} -equivalence class of a given graph, has been of interest. In this talk, we show that for $n \geq 3$, $[K_{n,n}]$ has size two. We conjecture that the complete bipartite graph $K_{m,n}$ for $n-m \geq 2$, is uniquely determined by its domination polynomial. Moreover, we show that the conjecture is true for the following cases:

(i) $n > max \{ m + 2, {m \choose 2} \};$ (ii) $m \le 4.$