On the Zeros of Domination Polynomials

Saeid Alikhani
Yazd University
Iran

Let G be a simple graph of order n. The domination polynomial of G is the polynomial $D(G, x) = \sum_{i=1}^{n} d(G, i)x^i$, where $d(G, i)$ is the number of dominating sets of G of size i. A root of $D(G, x)$ is called a domination root of G. We denote the set of distinct domination roots by $Z(D(G, x))$. In this paper, we obtain the domination roots of certain graphs, and discuss the location of domination zeros of the families of paths and cycles. We show that if a graph G has two distinct domination roots, then $Z(D(G, x)) = \{-2, 0\}$. Also, if G is a graph with no pendant vertex and has three distinct domination roots, then $Z(D(G, x)) \subseteq \{0, -2 \pm \sqrt{2}i, \frac{-3\pm\sqrt{3}i}{2}\}$.

Joint work with S. Akbari and Y. H. Peng.