Intersection theorems for finite sets

Peter Frankl
Waseda University
Japan

Let us consider a finite set X of n elements and a family \mathcal{F} of distinct subsets of X. Extremal set theory deals with (mostly) upper bounds on the size of \mathcal{F} subject to some conditions on the members of \mathcal{F}. Some of the most important theorems in this field deal with conditions related to the size of the intersection of members of \mathcal{F}. For example, for positive integers r and t (with r at least 2) a family \mathcal{F} is called r-wise t-intersecting if any r members of \mathcal{F} intersect in at least t elements. The by now classical theorem of Katona determines the maximal size of \mathcal{F} for the case of $r = 2$. The general situation for r greater than 2 is still open. The obvious construction of considering the family of all supersets of a fixed subset of t elements has size 2^{n-t}. I proved that this is best possible if and only if t is at most $2^r - r - 1$. In this talk we consider these and related problems.