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Spherlcal t-de51gn — approximating the sphere
Delsarte-Goethals-Seidel by a finite set (w.r.t. the
1977 integrals of polynomials)

Sn_lz{(ml,...,mn)ER”|:cf—|—..._|_mi:1} C R"

X Cc S 1, |X| < oo, is a spherical t-design
<

gt Jgno1 F(@)do (@) = gy Ypex f(2)

forVf(x) = f(x1,...,x,), polynomials of degree < t.

Here, |S™ 1| =the area of S"~!, and the integral in the

LHS is the usual surface integral on S"!
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More generally, for » > 0,

S (r) = {(x1,...,xn)ER™ | 22+ --- + 22 = r?} CR™
X C 8" 1(r), | X| < oo, is a spherical t-design

<= 1X C S™!is a spherical t-design

< W fsn—l(r) f(z)do(z) = ﬁ ZwEX f(x)

forVf(x) = f(x1,...,xs), polynomials of degree < ¢.



Equivalent definitions of spherical t- design

X C S™!is a spherical t-design

e
ZmEX f(x) =0, Vf(x), homogeneous harmonic poly-
nomials of degree 1,2,...,t.

e

All kinds of moments of degree < t of X are invariant
under any orthogonal transformation.
More precisely

§ 1 An E 1 2 A
w]_ 332 "'wn —_ wl wz °°'$nn

reX r€o(X)

)\1,...,)\77,20, )\1-|-"°-|—An§t, VO'GO(’I’L)



Facts on spherical t-designs
1. X is a t-design = X is a i-design i < t.
2. X is a t-design = o (X)) is a t-design Yo € O(n).

3. Xl, X2 (Xl M X2 = @) are t—designs — X1 U X2
is a t-design.



Lower bounds (Fisher type inequality)
(Delsarte-Goethals-Seidel 1977)

X is a t-design in S" ! C R"
t=2e = |X|> """+ ("

t=2e+1=>|X|>2("".")

If “ =" holds, then X is a spherical
tight t-design.



Examples

e Vertices of a regular (¢t + 1)-gon on the cirlle S* form
a t-design, and it is a tight t-design.

e Vertices of a regular polyhedron in §? C R? form a
spherical t-design.

regular polyhedron no. of vertices |t |tight
simplex 4 2| yes
cube § 3| yes
octahedron 8 3| no
icosahedron 12 5| yes
dodecahedron 20 5| no
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e Many good examples of spherical t-designs are ob-
tained as orbits of finite subgroups G C O(n)
X ={g(xy) | g € G} C S*! for a fixed x, € S*!
e Many good examples of spherical t-designs are ob-
tained as shells of lattices L C R"
X =L ={z€L||=|*=r

o L. = Egs-lattice C RS
G = Aut(L) = W(Eg) C O(8).
All the orbits of G = W (Eg) are spherical 7-designs.
(Some of them are 11-designs.)
All the shells of Eg lattice L are 7-designs.
(It is an open question whether any of them is an
8-design. This is equivalent to Lehmer’s conjecture. )



e L = Leech lattice C R**

G = Aut(L) = Conway - 0 C O(24).

All the orbits of G are spherical 11-designs.

(Some of them are 15-designs.)

All the shells of Leech lattice L are 11-designs.

(It is an open question whether any of them is a 12-
design.)

e As far as the known examples with n > 3 are con-
cerned, those obtained as orbits of G C O(n) are at
most 19-designs, and those obtained as shells of lat-
tices in R™ are at most 11-designs.
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So it is an interesting question whether any 12-design
is obtained as a shell of a lattice.

Also, it is an interesting question whether any t-
design with arbitrary large t are obtained as orbits of
finite groups in O(n).

e Theorem (Seymour-Zaslavsky 1984) for any t and
for any n, spherical t-design X on S"~ ! exists.

e Explicit constructions of spherical t-design X for
large t on 8™~ 1 for n > 3 are difficult in general. (cf.
G. Kuperberg 2006 for n = 3)
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e Tight spherical t-designs on S™~! are classified (up
to orthogonal transformations) except for t = 4,5,7
(Bannai-Damerell 1979, 1980).
If n > 3, then

t=1=— |X| =2, a pair of antipodal points.

t=2— |X|=n+4 1, regular simplex.

t=3— |X| = 2n, cross polytope (gen. octahe-
dron).

t=11 —= n =24, |X| =196560, X = the set of
min. vectors of Leech lattice in R?4

t=4— n=2k+1)>-3

t=5— mn=3o0r (2k+1)> -2

t=7— mn=3d°>—-4
Bannai-Munemasa-Venkov (2004) obtained more non-
existence results for t = 4,5, 7.
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Association schemes and coherent
configurations

Association scheme (X, {R;};cr) is a pair of a finite
set X and a set of relations {R;};c;r on X satisfying
certain axioms.

Coherent configuration is a more general concept
(than association scheme) defined as follows.
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coherent configurations

X

1.
2.
3.

. a finite set Ry, Ry,..., R C X X X.

If the following conditions (1)~(4) are
satisfied, then X = (X, {R;}1<i<i) is

a coherent configuration

X XX=R UR;U---U Ry is a partition.
Ip st. 1<p<l,RiU---UR,={(z,z) | T € X}.
For each i, 4’ such that 'R; = Ry, 1 <4’ <,
(where ‘R; := {(x,y) | (y,x) € R;})

. For each 1,5k, [{z € X | (z,2) € R, (2,y) € R;}|

is a constant on (x,y) € Ry (depends only on ¢, j, k).
(We denote it by pf,j.)
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Association schemes are special cases of coherent con-
figurations with p = 1, i.e.,

{(z,x) | x € X} = R;.

e Coherent configuration was defined by D. G. Hig-
man in 1970, and is a combinatorial axiomatization of
general (not necessarily transitive) finite permutation
groups.
e Association scheme is a combinatorial axiomatiza-
tion of transitive finite permutation groups.
e Important classes of association schemes:
P-polynomial association schemes,
Q-polynomial association schemes,
P- and Q-polynomial association schemes.
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s-distance set on S™!

Let X C S™ ! be a finite set. Define

AX)={z-y|z#yc X}
X is called an s-distance set if |A(X)| = s.

e Theorem (Delsarte-Goethals-Seidel 1977)
Let X C 8" ! be a finite set which is a t-design and
an s-distance set. Then the followings hold:

1.t < 2s.
2.t =2s <= X is a tight 2s-design.

3.t =2s —1 and X is antipodal <= X is a tight
(2s — 1)-design.



Moreover, we have

(X, {Ri}o<i<s)
4. |t > 25 — 2| = |is a Q-polynomial
scheme.

Here we define

AX) ={ay... o | —1 < a; < 1}
Ri:{(m,y)EXXX|.’B-y:ai}, (1§’L§S)
Ry ={(z,z) | z € X}

Here we use the notations Ry, ..., R, instead of R;,..., Rs11

e Remark (B-B):

t > 2s— 3 and
X is antipodal

(X, {Ri}o<i<s)
— is a Q-polynomial
scheme.
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Euclidean t-designs
A two step generalization of spherical t-designs, that
is X has a weight w and X is in R" (not necessarily
on S™ 1)
Notation:
X C R", a finite set
{llzll | x € X} =A{r1,...,7p}.
Si={z eR" | |lz]| =ri}, Xi=8nNnX (1<1i<p).
We say X is supported by S = U._ S;.
eg — { 0if0&ZS
1 otherwise.
w: X — Ryg, a weight function

w(X;) = ZmEXi w(z),
1571] = [ons do(a), 18] = [y, dors(a)
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If r; = 0, then ﬁ fSi f(x)do;(z) = £(0) for Vf(x) € P(n),
|S;| = r;" 1| S| for r; > 0.

Definition(Neumaier-Seidel, 1988)
(X, w) is a Euclidean t-design if

w(X)
|Si

/ f@)doi@) = 3 w(z)f(a)

1= 1 xeX

for any polynomial f(x) of degree at most t, wehre
W(X,) = ey, ().

Remark:
p=1, X # {0}, w(x) = 1, = Spherical t-designs.
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Equivalent definitions of Euclidean t-design
1. (X, w) is a Euclidean t-design.
2. The following equation holds

> w@)llzl|¥e(z) = 0

for any homogeneous harmonic polynomial ¢
of degree [, where | and j are integers
satisfying 1 <! <tand 0 < j < EL,

3. All kinds of moments of degree < t of X are
invariant under any orthogonal transformation.



Namely
> w)f(z) = ) wx)f(o(x))

holds for any polynomial f of degree < ¢
and o € O(n).

20
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Natural lower bounds
Theorem (Moller 1976)
Let X C R™ be a finite set and w be a positive weight
function on X.

1. (X, w): Euclidean 2e-design =—> | X | > dim(P.(n)|s).

2. (X, w): Euclidean (2e + 1)-design.

(a) eodd,oreevenand 0 € X —> |X| > 2dim(P}(n)|s).
(b) eevenand 0 € X — | X| > 2dim(P}(n)|S) — 1,

(2]

where P.(n) = @f_,Hom;(n), P(n) = &, ,Hom._,;(n),
where Hom;(n) is the space of homogeneous polyno-
mials of degree ¢, and S = S; U---U S, (= the set of
concentric spheres intersecting with X).
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Tight designs

If “ = ” holds in the previous page, then
(X, w) is a tight t-design on p concentric spheres

Moreover if
(1) dim(Pe(n)|s) = dim(P.(n)) (for t = 2e),
or
(2) dim(P*(n)]s) = dim(P?(n))
(for t = 2e + 1)
holds, then (X, w) is a Euclidean tight t-design
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Some more notation
(X, w): Euclidean t-design in R™.
For any X, X, # {0}, we define
A(Xy, X)) = {w— |z € X0,y € Xy # y}
][yl

Let sy, 1= |A(X\, X,)|,
(0) = 1.

A(Xx, X,) = {agl;; | u=1,...,8,}, Q) i=

(Then clearly A(X, X,) = A(X,, X)),

_ (w) _ _(u
Sxp = Spx and ay | = au,)\.)
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The following results (Theorem A ~ Theorem E) are
the main theorems of this talk.
Theorem A
(X, w): a Euclidean t-design, w(x) = w, for any € X,,.
and one of the following (1) or (2) holds.

1. If shp + s, <t —2(p — es — 2) holds for any A, v
and p with 1 < A\, v, u < p.
2. If X is antipodal and
Sav+ Sup— 0y —0,, <t—2(p—eg—2)
holds for any A\, v and p satisfying
1< A\v,u < p.

Then X has the structure of a coherent con-
figuration.
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()

In other words, for (z,y) € X, x X, with ¢ -y =a’,

{zeX, |z z=al, z-y=al)}
depends only on A\, v, u, i, j, k. (Here 1 < A\ v, u < p,
and 1 —0), <t <s5),, 1 -06,, <j<s,, and 1 -0y, <
k S S)\’M.)
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Theorem B

Let (X,w) be a tight Euclidean t-design supported by
2 concentric spheres. Then X has the structure of a

coherent configuration.
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Towards the classification of Euclidean
4-designs on 2 concentric spheres having

the structures of coherent configurations.

Theorem C
(X,w): a Euclidean 4-design in R"” on 2 concentric
spheres. 0 ¢ X and w is constant on each X,, s), <2
(A, = 1,2). Then X has the structure of a coherent
configuration and the following holds.

(1) 512 = 2.

(2) (X,w) is a tight Euclidean 4-design or similar to
one of the Euclidean 4-design having the parameters
given in (i) and (ii).




(1) n =2,
Xy = {i(%7 %)7 i(%? _%>}7
X2 = {(:l:?“g, O), (0, :l:T’Q)},
w(x)=1on X, wx)=ry
ro: any positive real number satisfying ry # 1.

4 on XQ,

28
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(i) n= (2k — 1) — 4,
| X1 =22k + 1)(k — 1)3,
| X5| = 2k3(2k — 3),

AXY) = {rorgy —ars)
k1
A(Xz) = {2k+1’ N (k—l)J(FQkJrl)}’

AX1, Xo) = {5 ==}
=1, wy =1,

(2k4+1)2(k—1)* 4
Wo = (2]{?—3)2]{?4 TQ 9

where k is any integer satisfying £ > 2 and ry is any
positive real number satisfying r, # 1.

The intersection numbers of the corresponding co-
herent configurations are given in the Appendix I.
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Theorem D

A Euclidean 4-design in R"” having the parameters given
in Theorem C (2) (ii) exists if and only if a tight spher-
ical 4-design on S" C R"*! exists.
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Theorem E The following is a series of feasible pa-
rameters for tight Euclidean 4-design in R".

n = (6k — 3)* — 3,

| X1| = (6k% — 6k + 1)(36k* — 36k + 7),

| X5| = 3(36k* — 36k + 7)(2k — 1)?,

_ 18k2—27k+8 _ 18K2—9k—1
A(Xl)_ 6(9k2—9k+1)(2k—1)’ 6(9k2—9k+1)(2]€—1)}7

A(Xy) =
36k3—54k2+25k—4 36k3—54k2+25k—3 }
9

2(6k%2—6k-+1)(18k2—18k+5)?  2(6k2—6k+1)(18k2—18k+5)

A(X17 XQ) —
36k2—36k+4 . 36k2—36k+10

(36k2—36k+6)(36k2—36k+10)’ (36k2—36k-+6)(36k2—36k+4) |2

. _ [3(18k2—18k+5)(6k2—6k+1)
=1 mn= \/ OkZ—9k+1 ’

_ _ 1
wr =1, wy= 81(2k—1)4"
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(2) If 2 < n < 15?2 — 3, then tight Euclidean 4-design
supported by 2 concentric spheres is similar to one of
the examples given in Theorem I, II and III in the
paper by Etsuko Bannai (2009) or to the one of those
having the parameters given in Theorem E .

The intersection numbers of the corresponding co-
herent configurations are given in the Appendix II.



33

Examples of tight Euclidean 4-designs on 2 concentric

spheres(Etsuko Bannai 2009)
Theorem 1. | X;| =n+ 1.

n || X1 || Xe| 71| o |A(XY) | A(Xs) | A(Xy, Xo) |wr | ws
21 3 3 r#1 —% —%TQ %r, —r |1 %3
415 |10 % -1 |3 —5| & —1 |1]27
51 6 |15 1Bl b 2]t )
6| 7 |21 |1 VI5| -+ | 9 -6 | 1, =2 | 1|4
22| 23 | 253 | 1|4/ —55 |92, -4 % -2 |1

For n = 4, 5, 6, X, has the structure of the Johnson scheme
J(n + 1,2), that is, the trivial tight 4-design in J(n + 1,2). For
n = 22, X, has the structure of tight 4-(23,7,1) design in the
Johnson schem J(23,7).



Theorem 11

‘Xl‘ = TZ—I—Q,
n ’X1’ |X2’ | To A(Xl) A(XQ) A(Xl,XQ) w1 | Wa
406 | 9 |1]v2(0, =13, -1 3, -1 | 1]+

X, has the structure of the Hamming scheme H(2,3),
that is, trivial tight 4-design of the Hamming scheme.

Theorem 111

n

| X1

| Xo|

(A

)

A(Xq)

A(Xo)

A(Xq, X5)

w1

Wwa

22

33

243

1

V11

1
0, —1

9
2, -3

1
g 1

1

1
81

X5 has the structure of tight 4-design in the Hamming

scheme H(11,3).

Note that the inner products A(Y;) or A(Y;,Y;) are differently

normalized from the previous normalization in this talk.




For more details of this talk, see our paper:
Euclidean designs and coherent configurations

by Eiichi Bannai and Etsuko Bannali,
which will be available in arXiv:0905.2143.

THANK YOU
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Appendix I

Feasible parameters of the Euclidean 4-design (X, w) given in Theorem C(2)(ii) and
the intersection numbers of the coresponding coherent configuration.

n=(2k —1)% — 4,
X1 =202k +1)(k —1)3, | X2| = 2k3(2k — 3),

A(X17X2) = {ﬁ: _ﬁ}9
2014 _
r = 1, w1 = 1, Wy = 7<2]z;k123()];k41) T‘2 4,

Intersection matrices and Character tables of the association scheme for X;

0 1 0
BY = | B¥@k-3) k+1)(K2—k—1k (k—1DE |,
0 K —k—1)(k—1) k(k—2)

i 0 0
BV = 0 k2 —k—1)(k—1)2
| (k—1)(2k-3)(k*—-k—-1) (k—2)(k—1)(k*—k—1)
1
k3(k_2) ’

(k—1)(k — 2)(k? — 2k — 2)



1 KQ2k-3) (k—1)(2k—-3)(k> -k —1)
Pi=|1 Kkk-2) —1—K*(k—2) ,
1 —k ~1+k
1 (2k+1)(2k—3) 22k —-3)(k* -k - 1)k
k—2)(2k+1 2(k2—k—1
O =11 (E=2)(2k+1) 2 k) ,
1 —2k—1 2k
Intersection matrices and Character tables of the association scheme for X5
[ 0 1 0
BY = | @k+1)(k2—k—1Dk (k+1)(k2—3)k (k+1)(k2—k—1k |,
i 0 (k+1)(k—1)3 (k? — k — 1)k?
[ 0 0 1
BY = 0 (k+1)(k — 1) (k2 — k — 1)k?
L Ck+1) (k-1 (k-1  (k—2)(k—1)(k*—k—1)
1 2k+1)(K*—k—1k (k—1)(2k> —3k*+1)
P=1 k(k* —k—1) —(k—=1)(k*—-1)
1 —k k—1]])
1 2k+1)(2k—3) 2(k—1)(2k+1)(k*—k—1)
Qy= | 1 2k — 3 —2k +2
1 _ (2k—3)(k+1) 2(k?—k—1)
k—1 k—1
P, = K32k =3), pta, = 2k + 1)(k—1)°
Phane = (k? =k = 1)k, P = (k= 1)%k?, Py = (k* =k — 1)k?
P2, =k (k—-2), p2.,=(Fk-1k, p3, =k3k-2)



Pole = (k= 13k, py, = (k+1)(k—1)3 ph,, = (k+1)(k—1)>3
PPy = (k= 12K, pha = (K2 —k—1)(k—1)% pP, =k —k—1)(k—1)%

P, = (k= 1%k plhy = (K2 =k —=1)(k— 1), pl} 5 = (k+1)(k* -k — 1)k,

Pl =k —k=1k, piy=FE k=D piia, = (k—1)%,
Pl = (= k= 1)k =12, plhy = (k—2)(k — (k> — k- 1),
pzz@ - (k2 —k—=1)(k - 1)2 ’ pgzzﬁz =(k—=2)(k - 1)(k2 —k— 1)a
P2, = (k=122 pl s = (K — k=DK% plia, = (K — k= 1)k

pazm = (B =k —=1)(k - 1), pz;& =(k+ 1) =k =1k, paiy = (k—1)%
In above p{ , = pj , holds for any a,b,c € {a;, 3,7 | i, j=0,1,2,k=1,2}.
Appendix 1II

The feasible parameters of the Euclidean tight 4-design given in Theorem E and
intersection numbers of the corresponding coherent configuration.

n = (6k — 3)% — 3,



| X1| = (6k% — 6k + 1)(36k% — 36k + 7), |X2| = 3(36k* — 36k +7)(2k — 1),
B 18k%—27k+8 _ 18K*-9k—1
AXLXD) = GO0k +1)(2k—1)7  6(90R2—9k+1)(2k—1) |
A(X2, X3) =
36k3 —54k2425k—4 36k3 —54k2+25k—3
) b

2(6k2—6k+1)(18k2—18k+5)?  2(6k*—6k+1)(18k2—18k+5

A(X, Xo) =
36k2—36k+4 - 36k2—36k+10

(36k2—36k+6)(36k2—36k+10)’ (36k2—36k+6)(36k%2—36k+4) |’

3(18k>—18k+5)(6k2—6k+1
n=1 r= \/ ( 9k2—9)k(+1 4,

1
wr=1, w2 = grgpoqy-

Intersection matrices and the Character tables of the association scheme for X;

0 1
BY = | 6(—142k)(9k% — 9k + 1)k 54k* — 453 — 12k +Th+1
0 (3k — 2)(k — 1)(18k? — 9k — 1)

0
(18k? — 9k — 1)k(3k — 2)
k(3k — 1)(18k% — 27k + 8)



0 0
B = [ 0 (3k — 2)(k — 1)(18k% — 9k — 1)
6(k — 1)(—1 + 2k)(9k* — 9k + 1) (18k% — 27k + 8)(k — 1)(3k — 1)

1
k(3k — 1)(18k? — 27k + 8) ,
54kt —171k3 + 177k — 64k + 5

1 6(—1+2k)(9%% -9k + 1)k 6(k—1)(—1+ 2k)(9%% — 9k + 1)
P=11 -3k+1 3k —2 ,
1 k(18k% — 27k + 8) —(k —1)(18k% — 9k — 1)

1 6(36k% —36k+7)(k— 1)k 36k2 — 36k + 6
1 (3k—1)(k—1)(36k>—36k+7) (18k2—27k+8)(6k*—6k+1)
Q1= T (S 112R) (9R2—9k+1) (—1r2k)(9k% 9k +1) )
1 k(3k—2)(36k%—36k+T7) _ (18k?—9k—1)(6k?—6k+1)
(—1+2k)(9k2—9k+1) (—1+2k)(9k2—9k+1)

Intersection matrices and the Character tables of the association scheme for X

0 1
BUY = | 2(6k% — 6k + 1)(18k2 — 18k +5) (92 — 9k + 1)(12k2 — 10k +3) ,
0 (3k — 2)(36k> — 54k? + 25k — 3)

0
(3k — 2)(36k3 — 54k 4 25k — 3)
(363 — 54k? + 25k — 4)(3k — 1)

b



0 1
B = 0 (3k — 2)(36k® — 54k% + 25k — 3) ,
2(6k? — 6k + 1)(18k% — 18k +5)  (36k3 — 54k? + 25k — 4)(3k — 1)
0
(363 — 54k? + 25k — 4)(3k — 1)
(9k% — 9k + 1)(12k? — 14k + 5)

1 2(6k% — 6k + 1)(18k? — 18k +5) 2(6k> — 6k + 1)(18k% — 18k +5)
P=|1 -3k+1 3k —2 ,
1 36k3 — 54k% + 25k — 4 3 — 36k3 + 54k* — 25k

1 2(6k* — 6k +1)(36k> — 36k +7)  36k> — 36k +6
_ 11 (3k—1)(36k>—36k+7) 3(36k3 —54k2425k—4)
Q2 = B 18k2—18k+5 18k2—18k+5 ’
1 (3k—2)(36k>—36k+T7) _ 3(36k3—54k*+25k—3)
18k2—18k+5 18k2—18k+5

P, = 3(18k% — 18k +5)(2k — 1)%,  pe, = (6k% — 6k + 1)(18k — 18k + 5),

P, = (2k — 1)(54k® — 72k% + 15k +4),  p2 = (3k — 2)(2k — 1)(18k? — 18k + 5),
poL,, = (2k — 1)(3k — 1)(18k% — 18k + 5),

P2, = (54k — 90k* + 33k — 1)(2k — 1),  p22., = (2k — 1)(3k — 1)(18k* — 18k + 5),
P32, = (3k — 2)(2k — 1)(18k* — 18k + 5),

pgi,w = (2k—1)(3k — 2)(9k2 -9k +1), p%jw = (9k2 — 9k +1)k(6k — 5),

P = (3k — 1)(18K3 — 27k2 + 14k — 3),

Pl = (3k = 1)(OK =9k +1)(2k — 1), p5, = (9K — 9k + 1)(6k — 1)(k — 1),



P = (3k — 2)(18K% — 27K + 14k — 2),
23k — 1)(9k* = 9k + 1)(2k — 1), plh = 2(3k — 1)(k — 1)(9%% — 9k + 1),
)

p72,52 =

Pl 5 =203k — 1)(18k° — 27k* + 14k — 3),  pl 5 = 2(2k — 1)(3k — 2)(9K* — 9k + 1),
pat o = 2k(3k — 1)(9k* — 9k + 1), Pk 4y = 2K(3k — 2) (9K — 9k + 1),

Pl 5, = 2(3k — 2)(18k% — 27k* + 14k —2),  pdby = 2(k — 1)(9k* — 9k +1)(3k — 2),
pls 5, = (6k — 1)(k — 1)(18k* — 18k +5), plé,w = (k — 1)(54k3 — 902 + 33k — 1),
pl: 5, = (2k —1)(3k — 1)(18%* — 18k + 5), p71 5, = (3k —2)(2k — 1)(18k* — 18k +5),
P2~y = k(54k3 — T2k% + 15k + 4), Py = (18k* — 18k +5)(3k — 1)(k — 1),
pl: 5, = (6k —5)k(18k* — 18k + 5), P2 4y = (3k — 2)k(18k2 — 18k + 5).

In above p{ , = p; , holds for any a,b,c € {o;, B, |4, 7=0,1,2,k =1,2}.



