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Introduction

Fadell, Fox, Neuwirth, 1963

Take an n dimensional complex space, delete all diagonals zi = zj

Cn − D is a K(π, 1) space, with fundamental group ∼= pure braid group

Khovanov, 1996 (real counterpart)

Take an n dimensional real space, delete all co-dimension 2 subspaces,
xi = xj = xk

Rn − Xn is a K(π, 1) space, with fundamental group ∼= pure twin group
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Introduction

Brieskorn, Deligne 1970’s

ConsiderH, the complexification of a Coxeter arrangement of type W

Cn −H is a K(π, 1) space, with fundamental group ∼= pure Artin group,
of type W.

B. Severs, White, 2008 (real counterpart)

Take an n dimensional real space, delete PW , the set of all 3-parabolic
subspaces of type W

Rn − PW is a K(π, 1) space (claim) with

fundamental group ∼= pure triplet group of type W (Theorem)
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Tools

Discrete Homotopy Theory
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Reflection group

W - an irreducible finite real reflection group acting on Rn, with:

S ⊂ W a set of simple reflections,

R = {wsw−1 : s ∈ S,w ∈ W} the set of all reflections.

m(s, s) = 1,m(s, t) = m(t, s) for all s, t ∈ S

and
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A presntation of W

W is generated by S subject to:
1 s2 = 1, ∀s ∈ S
2 st = ts, ∀s, t ∈ S such that m(s, t) = 2
3 sts = tst, ∀s, t ∈ S, such that m(s, t) = 3

...

i. stst · · ·︸ ︷︷ ︸
i

= tsts · · ·︸ ︷︷ ︸
i

, ∀s, t ∈ S, such that m(s, t) = i

...
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Coxeter Arrangement for W

Definition
The Coxeter arrangement H(W) is given by hyperplanes

Hr = {x ∈ Rn : rx = x}

for each r ∈ R.
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Example: Braid Arrangement

When W is of type A, the Coxeter arrangement is given by

xi − xj = 0, 1 ≤ i < j ≤ n + 1

and

π1(Cn −HA) ∼= pure braid group

π1(Rn −HW) ∼= pure Artin group of type W.
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What is an Artin group of type W over C

W1 is generated by S ∈ W subject to:

1 s2 = 1, ∀s ∈ S
2 st = ts, ∀s, t ∈ S such that m(s, t) = 2
3 sts = tst, ∀s, t ∈ S, such that m(s, t) = 3

...

i stst · · ·︸ ︷︷ ︸
i

= tsts · · ·︸ ︷︷ ︸
i

, ∀s, t ∈ S, such that m(s, t) = i

...
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Pure Artin group of type W

Let

ϕ : W1 → W with ϕ(s) = s, for all s ∈ S.

kerϕ = pure Artin Group of type W.

Brieskorns 1973

HW a Coxeter arrangement of type W

π1(Cn −HW) ∼= kerϕ
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The k-equal arrangement

Definition
The k-equal arrangment, An,k consists of subspaces (of Rn) given by
equations:

xi1 = xi2 = ... = xik ,
for all distinct indices 1 ≤ i1 < ... < ik ≤ n

When k=2 we recover the Braid arrangement.

Khovanov (1996) gave a description of π1(M(An,3)) as a Pure Twin
Group.

He also showed thatMR(An,3) is a K(π, 1) space.
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What is a twin group over R

W3 is generated by S ∈ Sn subject to:

1 s2 = 1, ∀s ∈ S
2 st = ts, ∀s, t ∈ S such that m(s, t) = 2
3 sts = tst, ∀s, t ∈ S, such that m(s, t) = 3
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Pure twin group

Let

ϕ : W3 → W with ϕ(s) = s, for all s ∈ S.

kerϕ = pure Twin Group ∼= π1(M(An,3))
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Real analogue to Brieskorn results in the spirit of Khovanov

W i is generated by S ⊂ W subject to:

1 s2 = 1, ∀s ∈ S
2 st = ts, ∀s, t ∈ S such that m(s, t) = 2
3 sts = tst, ∀s, t ∈ S, such that m(s, t) = 3

...

i. stst · · ·︸ ︷︷ ︸
i

= tsts · · ·︸ ︷︷ ︸
i

, ∀s, t ∈ S, such that m(s, t) = i

...
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Example with Dynkin Diagrams

Comparing Dynkin diagrams of W and W ′:
A′5

∞ ∞ ∞ ∞

∞ ∞

D′5

∞
∞

A5

D5

k-Parabolic Subspace Arrangements H. Barcelo MATHEMATICS AND STATISTICS 15 / 33



k-Parabolic Subspace Arrangement

Let ϕ : W i → W given by ϕ(s) = s, for all s ∈ S.

Theorem
B., Severs, White, (2008)

kerϕ ∼=π1(MR(Wn,3)),

where Wn,k is the k-parabolic arrangement of type w.
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Parabolic Subgroups and more

Definition
A subgroup G ⊆ W is parabolic if G =< wIw−1 >,
for some I ⊂ S, w ∈ W.
G is k-parabolic if G is of rank k − 1.

For G ⊂ W, let Fix(G) = {x ∈ Rn : wx = x,∀w ∈ G}
For subspace X ⊂ Rn, let Gal(X) = {w ∈ W : wx = x,∀x ∈ X}
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Galois Correspondence

Let P(W) be the poset of all parabolic subgroups of W ordered by inclusion.
Let L(W) be the intersection lattice of the Coxeter arrangement, ordered by
reverse inclusion.

Theorem (Barcelo and Ihrig, 1999)
P(W) ∼= L(W) via

G→ Fix(G)

Gal(X)← X

We will use this “Galois correspondence” to define k-parabolic arrangements.

But first we give an example for A3 = S4.
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Example of correspondence W = S4

L(S4) P(S4)

1/2/3/4

1234

12/34134/2123/413/24124/31/23414/23

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

e

<34>24<12>24 23<12>23

34<23>34 <12><23>

<12,23> <12,34>

<23,34>

<12, 23, 34>

12<23,34>12

34<12,23>3413<12,34>13

23<12,34>23

Example: 14/23↔< (1, 4), (2, 3) >= (1, 3) < (1, 2), (3, 4) > (1, 3)
Example: 134/2↔< (1, 3), (3, 4) >= (1, 2) < (2, 3), (3, 4) > (1, 2)
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Definition of the k-parabolic arrangement

Definition
Let W be an irreducible real reflection group of rank n. Let Pn,k(W) contain
all irreducible k-parabolic subgroups of W.
Then the k-parabolic arrangement Wn,k is the collection of subspaces

Fix(G),G ∈ Pn,k(W)
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Example with W = A8

Example: W = S9 = A8

Let G = (1, 4)(6, 8) < (4, 5), (5, 6) > (6, 8)(1, 4) =< (1, 4), (4, 8) >.

We see that Fix(G) is given by x1 = x4 = x8.

For every G ∈ P8,3(A8), Fix(G) is a subspace in A9,3.

Thus, W8,3 is the 3-equal arrangement in R8.
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Examples of the k-parabolic arrangement

When W is of type A or B, then Wn,k corresponds to An+1,k, and the
Bn,k,k−1 arrangement (of Björner-Welker and Björner-Sagan
respectively).

Wn,2 is the Coxeter arrangement for W and Wn,n+1 consists of the origin.

When W is of type D, then Wn,3 corresponds to the Björner-Sagan Dn,3
arrangement (not so for Wn,k, k > 3).
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Why is B., Severs and White’s Theorem true?

Essentially because

π1(MR(Wn,3)) ∼= An−2
1 (W − permutahedron)

and

ker(ϕ) ∼= An−2
1 (W − permutahedron).
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What is A1

Definition
Let ∆ be simplicial complex of dimension d, 0 ≤ q ≤ d, σ0 ∈ ∆ be maximal
with dimension ≥ q.

1 Two simplicies σ and τ are q-near if |σ ∩ τ | ≥ q + 1.
2 A q-chain is a sequence σ1, . . . , σk, such that σi, σi+1 are q-near for all i.
3 A q-loop is a q-chain with σ1 = σk = σ0.
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A-Homotopy

Definition
We define an equivalence relation, 'A on q-loops with the following
conditions:

1 The q-loop
(σ) = (σ0, σ1, . . . , σi, σi+1, . . . , σn, σ0)

is equivalent to the q-loop

(σ) = (σ0, σ1, . . . , σi, σi, σi+1, . . . σn, σ0)

2 If (σ) and (τ) have the same length then they are equivalent if there is a
grid between them.
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A-Homotopy

σ 0

σ 0

σ 0

σ 0

σ 0

σ 0

σ 0σ 0 σ σ σ σ

α α α α

ββ β

τ τ τ

2 3 4 5

β
1 2

3 4

1 2 τ 3 4

432
1

Edges between two simplices indicate they are q-near. Each row is a q-loop.
Such a grid is an A-homotopy between (σ) and(τ).
The equivalence relation 'A is called A-homotopy.

The set of equivalence classes, Aq
1(∆, σ0), forms a group under concatenation.
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The Γ Graph

Definition
Let Γ = Γq(∆) be a graph with the following properties:

1 The vertices of Γ are the maximal simplices of ∆.
2 στ is an edge iff they are q-near.
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Computing Aq
1

Theorem (B., Kramer, Laubenbacher, Weaver, 2001)

Aq
1(∆, σ0) ' π1(XΓ, σ0)

where XΓ is a cell complex obtained by gluing a 2-cell on each 3- and 4-cycle
of Γ = Γq(∆).

k-Parabolic Subspace Arrangements H. Barcelo MATHEMATICS AND STATISTICS 28 / 33



Coxeter complex

Given W with essentialized Coxeter arrangement H, intersect the Coxeter
arrangement with the (n− 1)-sphere.

The resulting cell decomposition of the sphere is the Coxeter complex, C(W).

Theorem (B., Severs, White (2008))

π1(M(Wn,3)) ∼= An−2
1 (C(W)).
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Why is An−2
1 (C(W)) ∼= kerϕ

Γ = Γn−2(C(W)) is the graph of the W-Permutahedron.

Vertices in Γ correspond to elements of W.

σ, τ is an edge if σ = τs for some s ∈ S. Label the edge σ, τ by s.

Γ is bipartite, labels of 4-cycles correspond to pairs s, t of commuting
reflections.
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Loops in Γn−2(C(W))

Walks in Γn−2(C(W))↔ words in S∗

Loops in Γn−2(C(W))↔ w ∈ S∗,w = 1 ∈ W

homotopic loops in Γn−2(C(W))↔ w = v ∈ kerϕ

Thus one obtains that π1(M(Wn,3)) ∼= kerϕ.
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Open Questions

Is homotopy theory ofM(Wn,k) equivalent to A-theory of C(W)? In
other words, do we have:

An−k
m (C(W)) ∼= πm(M(Wn,k)),m ≥ 1?

If so, can we use combinatorial methods to calculate the rank of
Hk−1(M(Wn,k))?

Can the Betti numbers be formulated in terms of (combinatorial)
invariants of Coxeter groups?

Can we find a discrete homology theory?
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Any Questions?

Thank You.
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