k-Parabolic Subspace Arrangements

Hélène Barcelo Christopher Severs Jacob White

Mathematical Sciences Research Institute and ASU School of Mathematics and Statistical Sciences

Introduction

Fadell, Fox, Neuwirth, 1963

Take an *n* dimensional complex space, delete all diagonals $z_i = z_i$

 $\mathbb{C}^n - D$ is a $K(\pi, 1)$ space, with fundamental group \cong pure braid group

Khovanov, 1996 (real counterpart)

Take an *n* dimensional real space, delete all co-dimension 2 subspaces, $x_i = x_i = x_k$

 $\mathbb{R}^n - X_n$ is a $K(\pi, 1)$ space, with fundamental group \cong pure twin group

Introduction

Brieskorn, Deligne 1970's

Consider \mathcal{H} , the complexification of a Coxeter arrangement of type W

 $\mathbb{C}^n - \mathcal{H}$ is a $K(\pi, 1)$ space, with fundamental group \cong pure Artin group, of type W.

B. Severs, White, 2008 (real counterpart)

Take an n dimensional real space, delete \mathcal{P}_W , the set of all 3-parabolic subspaces of type W

$$\mathbb{R}^n - \mathcal{P}_W$$
 is a $K(\pi, 1)$ space (**claim**) with

fundamental group \cong pure triplet group of type W (**Theorem**)

MATHEMATICS AND STATISTICS

Tools

Discrete Homotopy Theory

Reflection group

W - an irreducible finite real reflection group acting on \mathbb{R}^n , with:

- $S \subset W$ a set of simple reflections,
- $R = \{wsw^{-1} : s \in S, w \in W\}$ the set of all reflections.
- m(s, s) = 1, m(s, t) = m(t, s) for all $s, t \in S$

and

A presntation of W

W is generated by S subject to:

- \bullet $s^2 = 1, \forall s \in S$
- ② st = ts, $\forall s, t \in S$ such that m(s, t) = 2

:

i. $\underbrace{stst\cdots}_{i} = \underbrace{tsts\cdots}_{i}, \forall s, t \in S$, such that m(s,t) = i

Coxeter Arrangement for W

Definition

The Coxeter arrangement $\mathcal{H}(W)$ is given by hyperplanes

$$H_r = \{x \in \mathbb{R}^n : rx = x\}$$

for each $r \in R$.

Example: Braid Arrangement

When W is of type A, the Coxeter arrangement is given by

$$x_i - x_j = 0, 1 \le i < j \le n + 1$$

and

$$\pi_1(\mathbb{C}^n - \mathcal{H}_A) \cong \text{pure braid group}$$

 $\pi_1(\mathbb{R}^n - \mathcal{H}_{\mathcal{W}}) \cong \text{pure Artin} \text{ group of type } W.$

What is an Artin group of type W over \mathbb{C}

 W^1 is generated by $S \in W$ subject to:

- 2 $st = ts, \forall s, t \in S \text{ such that } m(s, t) = 2$
- § sts = tst, $\forall s, t \in S$, such that m(s, t) = 3

:

i
$$\underbrace{stst\cdots}_{i} = \underbrace{tsts\cdots}_{i}$$
, $\forall s, t \in S$, such that $m(s,t) = i$

:

MATHEMATICS AND STATISTICS

Pure Artin group of type W_1

Let

$$\varphi: W^1 \to W \text{ with } \varphi(s) = s, \text{ for all } s \in S.$$

 $\ker \varphi = \text{pure Artin Group of type W}.$

Brieskorns 1973

 $\mathcal{H}_{\mathcal{W}}$ a Coxeter arrangement of type W

$$\pi_1(\mathbb{C}^n - \mathcal{H}_{\mathcal{W}}) \cong \ker \varphi$$

The k-equal arrangement

Definition

The *k*-equal arrangment, $A_{n,k}$ consists of subspaces (of \mathbb{R}^n) given by equations:

- $x_{i_1} = x_{i_2} = ... = x_{i_k}$, for all distinct indices $1 \le i_1 < ... < i_k \le n$
- When k=2 we recover the Braid arrangement.

The *k*-equal arrangement

Definition

The *k*-equal arrangment, $A_{n,k}$ consists of subspaces (of \mathbb{R}^n) given by equations:

- $x_{i_1} = x_{i_2} = ... = x_{i_k}$, for all distinct indices $1 \le i_1 < ... < i_k \le n$
- When k=2 we recover the Braid arrangement.
- Khovanov (1996) gave a description of $\pi_1(\mathcal{M}(\mathcal{A}_{n,3}))$ as a Pure Twin Group.
- He also showed that $\mathcal{M}^{\mathbb{R}}(A_{n,3})$ is a $K(\pi,1)$ space.

What is a twin group over \mathbb{R}

 W^3 is generated by $S \in S_n$ subject to:

- ② st = ts, $\forall s, t \in S$ such that m(s, t) = 2
- $sts = tst, \forall s, t \in S, \text{ such that } m(s, t) = 3$

Pure twin group

Let

$$\varphi: W^3 \to W \text{ with } \varphi(s) = s, \text{ for all } s \in S.$$

$$\ker \varphi = \operatorname{pure} \operatorname{Twin} \operatorname{Group} \cong \pi_1(\mathcal{M}(\mathcal{A}_{n,3}))$$

Real analogue to Brieskorn results in the spirit of Khovanov

 W^i is generated by $S \subset W$ subject to:

- ② $st = ts, \forall s, t \in S \text{ such that } m(s, t) = 2$

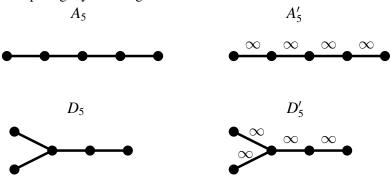
:

i.
$$\underbrace{stst\cdots}_{i} = \underbrace{tsts\cdots}_{i}, \forall s, t \in S$$
, such that $m(s,t) = t$

:

Example with Dynkin Diagrams

Comparing Dynkin diagrams of W and W':



H. Barcelo

k-Parabolic Subspace Arrangement

Let $\varphi: W^i \to W$ given by $\varphi(s) = s$, for all $s \in S$.

Theorem

B., Severs, White, (2008)

$$\ker \varphi \cong \pi_1(\mathcal{M}^{\mathbb{R}}(\mathcal{W}_{n,3})),$$

where $W_{n,k}$ is the k-parabolic arrangement of type w.

Parabolic Subgroups and more

Definition

A subgroup G ⊆ W is parabolic if G =< wIw⁻¹ >, for some I ⊂ S, w ∈ W.
G is k-parabolic if G is of rank k − 1.

Parabolic Subgroups and more

Definition

- A subgroup G ⊆ W is parabolic if G =< wIw⁻¹ >, for some I ⊂ S, w ∈ W.
 G is k-parabolic if G is of rank k − 1.
- For $G \subset W$, let $Fix(G) = \{x \in \mathbb{R}^n : wx = x, \forall w \in G\}$
- For subspace $X \subset \mathbb{R}^n$, let $Gal(X) = \{ w \in W : wx = x, \forall x \in X \}$

Galois Correspondence

Let $\mathcal{P}(W)$ be the poset of all parabolic subgroups of W ordered by inclusion. Let $\mathcal{L}(W)$ be the intersection lattice of the Coxeter arrangement, ordered by reverse inclusion.

Theorem (Barcelo and Ihrig, 1999)

$$\mathcal{P}(W) \cong \mathcal{L}(W)$$
 via

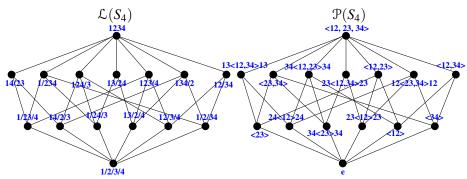
$$G \rightarrow Fix(G)$$

$$Gal(X) \leftarrow X$$

We will use this "Galois correspondence" to define k-parabolic arrangements. But first we give an example for $A_3 = S_4$.

H. Barcelo

Example of correspondence $W = S_4$



Example: $14/23 \leftrightarrow <(1,4),(2,3)>=(1,3)<(1,2),(3,4)>(1,3)$

Example: $134/2 \leftrightarrow <(1,3), (3,4)>=(1,2)<(2,3), (3,4)>(1,2)$

Definition of the *k*-parabolic arrangement

Definition

Let W be an irreducible real reflection group of rank n. Let $\mathcal{P}_{n,k}(W)$ contain all irreducible k-parabolic subgroups of W.

Then the *k*-parabolic arrangement $W_{n,k}$ is the collection of subspaces

$$Fix(G), G \in \mathcal{P}_{n,k}(W)$$

Example with $W = A_8$

Example:
$$W = S_9 = A_8$$

Let
$$G = (1,4)(6,8) < (4,5), (5,6) > (6,8)(1,4) = < (1,4), (4,8) >$$
.

- We see that Fix(G) is given by $x_1 = x_4 = x_8$.
- For every $G \in \mathcal{P}_{8,3}(A_8)$, Fix(G) is a subspace in $\mathcal{A}_{9,3}$.
- Thus, $W_{8,3}$ is the 3-equal arrangement in \mathbb{R}^8 .

Examples of the *k*-parabolic arrangement

- When W is of type A or B, then $W_{n,k}$ corresponds to $A_{n+1,k}$, and the $\mathcal{B}_{n,k,k-1}$ arrangement (of Björner-Welker and Björner-Sagan respectively).
- $W_{n,2}$ is the Coxeter arrangement for W and $W_{n,n+1}$ consists of the origin.
- When W is of type D, then $W_{n,3}$ corresponds to the Björner-Sagan $\mathcal{D}_{n,3}$ arrangement (not so for $W_{n,k}$, k > 3).

Why is B., Severs and White's Theorem true?

Essentially because

$$\pi_1(\mathcal{M}^{\mathbb{R}}(\mathcal{W}_{n,3})) \cong A_1^{n-2}(W-permutahedron)$$

and

$$\ker(\varphi) \cong A_1^{n-2}(W-permutahedron).$$

What is $\overline{A_1}$

Definition

Let Δ be simplicial complex of dimension d, $0 \le q \le d$, $\sigma_0 \in \Delta$ be maximal with dimension > q.

- Two simplicies σ and τ are q-near if $|\sigma \cap \tau| \ge q+1$.
- **2** A q-chain is a sequence $\sigma_1, \ldots, \sigma_k$, such that σ_i, σ_{i+1} are q-near for all i.
- **3** A q-loop is a q-chain with $\sigma_1 = \sigma_k = \sigma_0$.

A-Homotopy

Definition

We define an equivalence relation, \simeq_A on q-loops with the following conditions:

 \bullet The *q*-loop

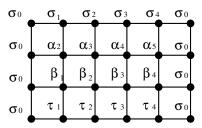
$$(\sigma) = (\sigma_0, \sigma_1, \dots, \sigma_i, \sigma_{i+1}, \dots, \sigma_n, \sigma_0)$$

is equivalent to the q-loop

$$(\sigma) = (\sigma_0, \sigma_1, \dots, \sigma_i, \sigma_i, \sigma_{i+1}, \dots \sigma_n, \sigma_0)$$

② If (σ) and (τ) have the same length then they are equivalent if there is a grid between them.

A-Homotopy



Edges between two simplices indicate they are q-near. Each row is a q-loop.

Such a grid is an *A*-homotopy between (σ) and (τ) .

The equivalence relation \simeq_A is called *A*-homotopy.

The set of equivalence classes, $A_1^q(\Delta, \sigma_0)$, forms a group under concatenation.

The Γ Graph

Definition

Let $\Gamma = \Gamma^q(\Delta)$ be a graph with the following properties:

- **1** The vertices of Γ are the maximal simplices of Δ .
- **2** $\sigma \tau$ is an edge iff they are *q*-near.

Computing A_1^q

Theorem (B., Kramer, Laubenbacher, Weaver, 2001)

$$A_1^q(\Delta, \sigma_0) \simeq \pi_1(X_{\Gamma}, \sigma_0)$$

where X_{Γ} is a cell complex obtained by gluing a 2-cell on each 3- and 4-cycle of $\Gamma = \Gamma^q(\Delta)$.

Coxeter complex

Given W with essentialized Coxeter arrangement \mathcal{H} , intersect the Coxeter arrangement with the (n-1)-sphere.

The resulting cell decomposition of the sphere is the Coxeter complex, $\mathcal{C}(W)$.

Theorem (B., Severs, White (2008))

$$\pi_1(\mathcal{M}(\mathcal{W}_{n,3})) \cong A_1^{n-2}(\mathcal{C}(W)).$$

Why is $A_1^{n-2}(\mathcal{C}(W)) \cong \ker \varphi$

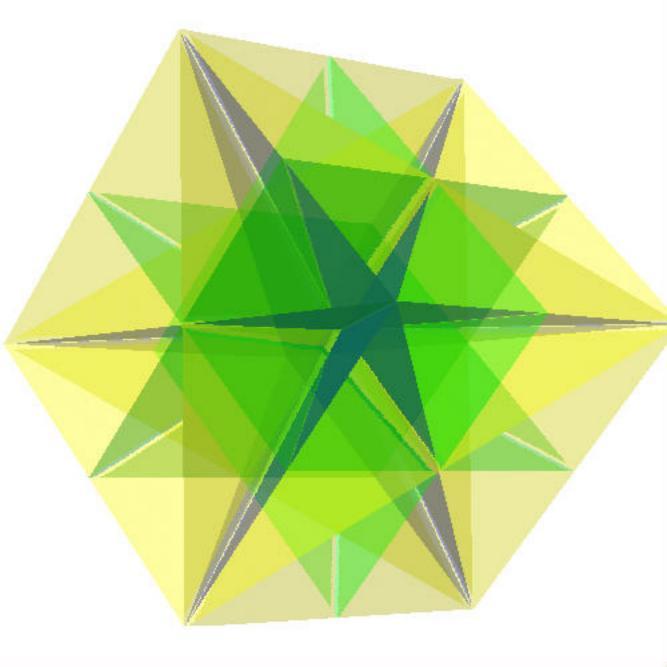
- $\Gamma = \Gamma^{n-2}(\mathcal{C}(W))$ is the graph of the W-Permutahedron.
- Vertices in Γ correspond to elements of W.
- σ, τ is an edge if $\sigma = \tau s$ for some $s \in S$. Label the edge σ, τ by s.
- Γ is bipartite, labels of 4-cycles correspond to pairs s, t of commuting reflections.

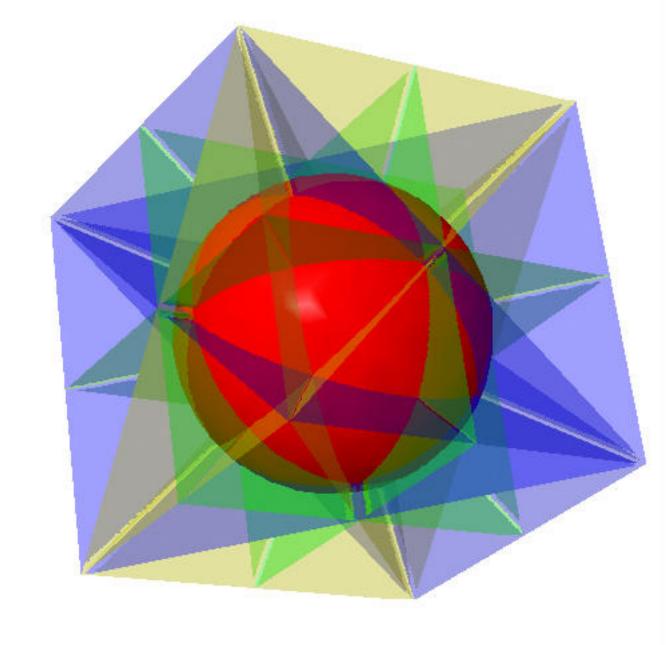
Loops in $\Gamma^{n-2}(\mathcal{C}(W))$

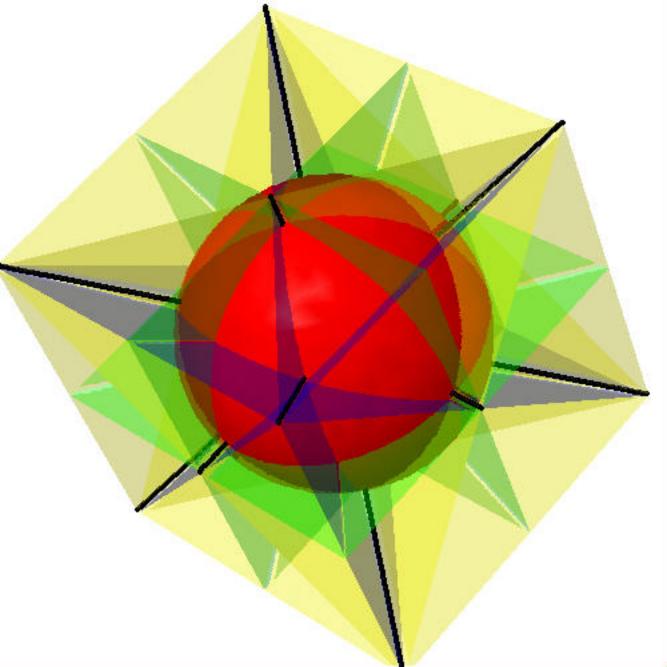
- Walks in $\Gamma^{n-2}(\mathcal{C}(W)) \leftrightarrow \text{words in } S^*$
- Loops in $\Gamma^{n-2}(\mathcal{C}(W)) \leftrightarrow w \in S^*, w = 1 \in W$
- homotopic loops in $\Gamma^{n-2}(\mathcal{C}(W)) \leftrightarrow w = v \in \ker \varphi$

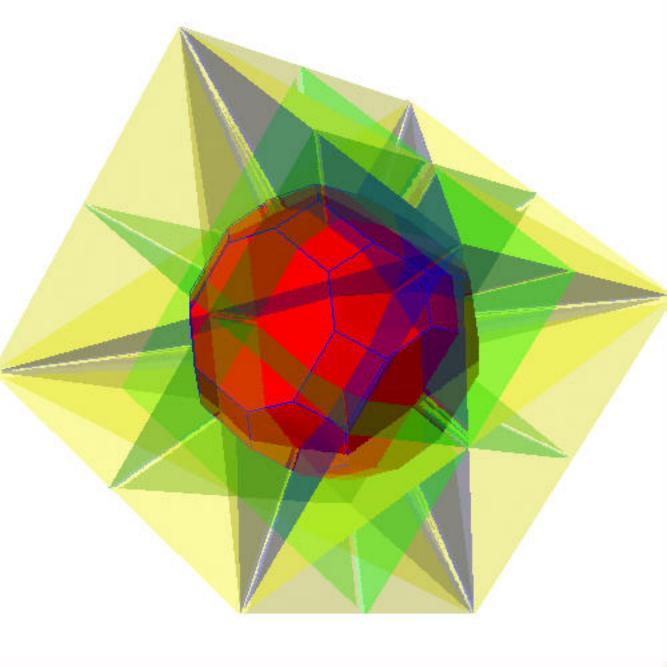
Thus one obtains that $\pi_1(\mathcal{M}(\mathcal{W}_{n,3})) \cong \ker \varphi$.

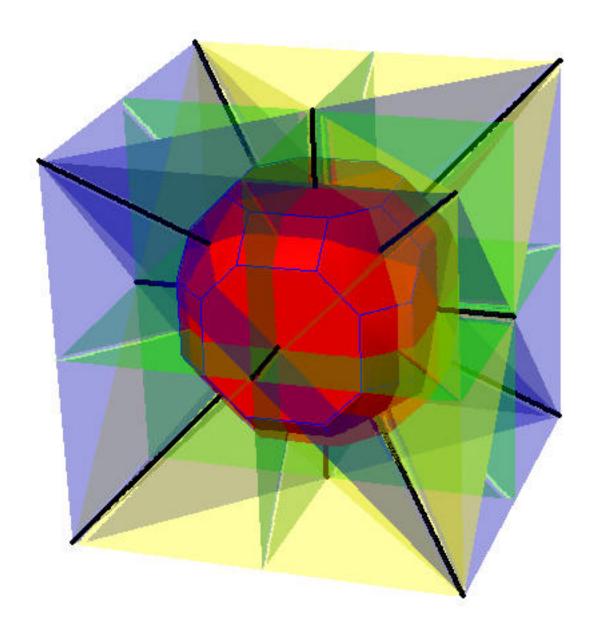
MATHEMATICS AND STATISTICS

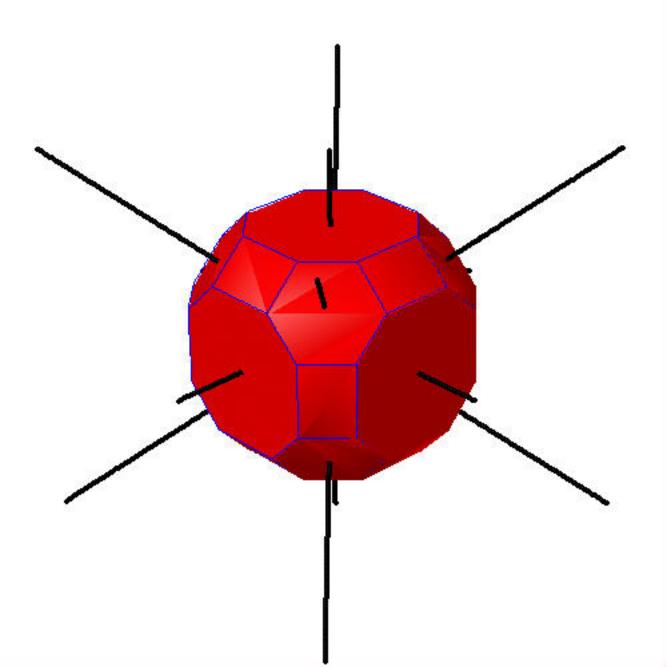


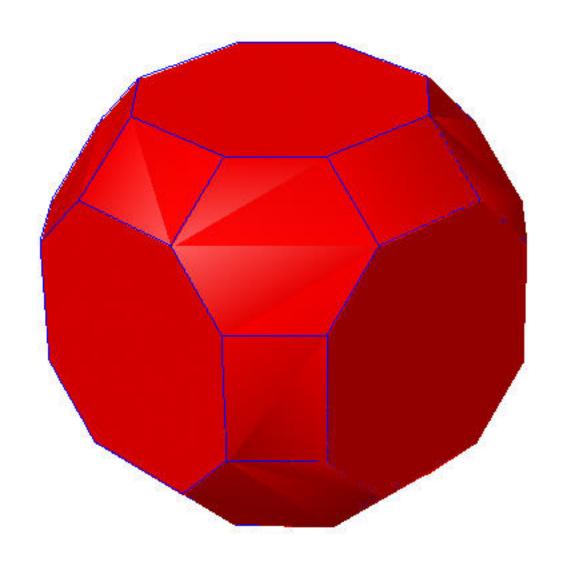












Open Questions

• Is homotopy theory of $\mathcal{M}(W_{n,k})$ equivalent to *A*-theory of $\mathcal{C}(W)$? In other words, do we have:

$$A_m^{n-k}(\mathcal{C}(W)) \cong \pi_m(\mathcal{M}(\mathcal{W}_{n,k})), m \ge 1$$
?

- If so, can we use combinatorial methods to calculate the rank of $H^{k-1}(\mathcal{M}(\mathcal{W}_{n,k}))$?
- Can the Betti numbers be formulated in terms of (combinatorial) invariants of Coxeter groups?
- Can we find a discrete homology theory?

Any Questions?

Thank You.