Signed Domination Number of a Graph/Matrix

Richard A. Brualdi

University of Wisconsin-Madison

IPM 20 - Combinatorics, Tehran 2009

- 1 Signed (Edge) Domination A MiniSurvey
- 2 Why am I Interested?
- **3** Regular Matrices
- 4 Semi-Regular Matrices

Co-Workers/My Students

- Adam Berliner
- Louis Deaett
- Kathleen Kiernan
- Seth Meyer
- Michael Schroeder

G = (V, E) a graph. For $v \in V$, N[v] denotes the closed neighborhood of v.

A function $f: V \to \{1, -1\}$ is a **dominating (vertex)signing** of G provided $\sum_{u \in N[v]} f(u) \ge 1$ for all vertices v.

The **value** $\gamma_{sd}(f)$ of a dominating signing f is

$$\sum_{v \in V} f(v),$$

and the **signed domination number** of G is

$$\gamma_{sd}(G) = \min\{\gamma_{sd}(f) : f \text{ a dominating signing of } G\}$$

G = (V, E) a graph. For $v \in V$, N[v] denotes the closed neighborhood of v.

A function $f: V \to \{1, -1\}$ is a **dominating (vertex)signing** of G provided $\sum_{u \in N[v]} f(u) \ge 1$ for all vertices v.

The value $\gamma_{sd}(f)$ of a dominating signing f is

$$\sum_{v\in V}f(v),$$

and the **signed domination number** of G is

$$\gamma_{sd}(G) = \min\{\gamma_{sd}(f) : f \text{ a dominating signing of } G\}.$$

There are several lower and upper bounds known for $\gamma_{sd}(G)$ of order n and exact values for certain graphs.

For instance (Haas and Wexler, 2001), if the minimum degree of G is at least 2, then

$$\gamma_{sd}(G) \geq \frac{4-\Delta}{4+\Delta}n.$$

The signed domination number $\gamma_{sd}(G)$ may be negative, and indeed arbitrarily close to -n.

But this is not our concern in this talk

There are several lower and upper bounds known for $\gamma_{sd}(G)$ of order n and exact values for certain graphs.

For instance (Haas and Wexler, 2001), if the minimum degree of G is at least 2, then

$$\gamma_{sd}(G) \geq \frac{4-\Delta}{4+\Delta}n.$$

The signed domination number $\gamma_{sd}(G)$ may be negative, and indeed arbitrarily close to -n.

But this is not our concern in this talk

There are several lower and upper bounds known for $\gamma_{sd}(G)$ of order n and exact values for certain graphs.

For instance (Haas and Wexler, 2001), if the minimum degree of G is at least 2, then

$$\gamma_{sd}(G) \geq \frac{4-\Delta}{4+\Delta}n.$$

The signed domination number $\gamma_{sd}(G)$ may be negative, and indeed arbitrarily close to -n.

But this is not our concern in this talk,

Dominating Edge Signing Number of a Graph

Let L(G) be the **line graph** of G = (V, E). The set of vertices of L(G) is E, and for distinct $e, f \in E$, e and f are joined by an edge in L(G) if and only if e and f have a common vertex.

A dominating signing of L(G) is an **edge dominating signing** of G, so a function $h: E \to \{1, -1\}$ satisfying

$$\sum_{f \in N[e]} h(f) \ge 1 \text{ for all } e \in E.$$

Here N[e] is the closed neighborhood of the edge e in G.

Dominating Edge Signing Number of a Graph

Let L(G) be the **line graph** of G = (V, E). The set of vertices of L(G) is E, and for distinct $e, f \in E$, e and f are joined by an edge in L(G) if and only if e and f have a common vertex.

A dominating signing of L(G) is an edge dominating signing of G, so a function $h: E \to \{1, -1\}$ satisfying

$$\sum_{f \in N[e]} h(f) \ge 1$$
 for all $e \in E$.

Here N[e] is the closed neighborhood of the edge e in G.

Signed Edge Domination Number of a Graph

The value $\gamma'_{sd}(h)$ of an edge dominating signing h is

$$\gamma'_{sd}(h) = \sum_{e \in E} h(e).$$

The **signed edge domination number** of G is

$$\gamma_{sd}'(G) = \min_{h} \gamma_{sd}'(h) = \min_{h} \left\{ \sum_{e \in E} h(e) \right\}$$

where the minimum is taken over all edge dominating signings h of G

Signed Edge Domination Number of a Graph

The value $\gamma'_{sd}(h)$ of an edge dominating signing h is

$$\gamma'_{sd}(h) = \sum_{e \in E} h(e).$$

The **signed edge domination number** of G is

$$\gamma'_{sd}(G) = \min_{h} \gamma'_{sd}(h) = \min_{h} \left\{ \sum_{e \in E} h(e) \right\}$$

where the minimum is taken over all edge dominating signings h of G.

A tree *T* with 7 vertices, 6 edges:

$$\gamma'_{sd}(T) = 6$$
, all edges must be signed $+1$

A tree *T* with 7 vertices, 6 edges:

$$\gamma'_{sd}(T) = 6$$
, all edges must be signed $+1$

Some Known Results on $\gamma'_{sd}(G)$

- (Xu 2004) and (Karami, Khodkar, Sheikholeslami (2004/5) If T is a tree, then $\gamma'_{sd}(T) \geq 1$.
- (Xu 2005) More generally, if G is a graph with n vertices and m edges, and no vertices of degree 0, then

$$1-m \leq \gamma'_{sd}(G) \leq 2n-4.$$

For every graph G the graph H obtained from G by adding enough pendent edges to each vertex (one less that the degree of each vertex) achieves the lower bound.

(3) (Karami, Sheikholeslami, Khodkar 2008) If G is connected, then $\gamma'_{sd}(G) = n - m$ iff the degree of each vertex v_i of G is an odd number $2k_i + 1$ and there are at least k_i pendent edges at v_i

Some Known Results on $\gamma'_{sd}(G)$

- (Xu 2004) and (Karami, Khodkar, Sheikholeslami (2004/5) If T is a tree, then $\gamma'_{sd}(T) \geq 1$.
- 2 (Xu 2005) More generally, if G is a graph with n vertices and m edges, and no vertices of degree 0, then

$$n-m\leq \gamma'_{sd}(G)\leq 2n-4.$$

For every graph G the graph H obtained from G by adding enough pendent edges to each vertex (one less that the degree of each vertex) achieves the lower bound.

(3) (Karami, Sheikholeslami, Khodkar 2008) If G is connected, then $\gamma'_{sd}(G) = n - m$ iff the degree of each vertex v_i of G is an odd number $2k_i + 1$ and there are at least k_i pendent edges at v_i .

Some Known Results on $\gamma'_{sd}(G)$

- (Xu 2004) and (Karami, Khodkar, Sheikholeslami (2004/5) If T is a tree, then $\gamma'_{sd}(T) \geq 1$.
- 2 (Xu 2005) More generally, if G is a graph with n vertices and m edges, and no vertices of degree 0, then

$$n-m\leq \gamma'_{sd}(G)\leq 2n-4.$$

For every graph G the graph H obtained from G by adding enough pendent edges to each vertex (one less that the degree of each vertex) achieves the lower bound.

3 (Karami, Sheikholeslami, Khodkar 2008) If G is connected, then $\gamma'_{sd}(G) = n - m$ iff the degree of each vertex v_i of G is an odd number $2k_i + 1$ and there are at least k_i pendent edges at v_i .

More Known Results on $\gamma'_{sd}(G)$

 \bigcirc (Xu 2005) Conjecture: If G is a graph with n vertices, then

$$\gamma'_{sd}(G) \leq n-1,$$

independent of the number m of edges.

(Karami, Sheikholeslami, Khodkar 2008) The conjecture is true for Eulerian graphs, graphs with all vertices of odd degree, and regular graphs. In addition,

$$\gamma'_{sd}(G) \leq \lceil 3n/2 \rceil.$$

(Haas, Wexler 2004) Upper and lower bounds are established for $\gamma_{sd}(G) + \gamma_{sd}(\overline{G})$.

More Known Results on $\gamma'_{sd}(G)$

1 (Xu 2005) **Conjecture:** If G is a graph with n vertices, then

$$\gamma'_{sd}(G) \leq n-1,$$

independent of the number m of edges.

(Karami, Sheikholeslami, Khodkar 2008) The conjecture is true for Eulerian graphs, graphs with all vertices of odd degree, and regular graphs. In addition,

$$\gamma'_{sd}(G) \leq \lceil 3n/2 \rceil.$$

(Haas, Wexler 2004) Upper and lower bounds are established for $\gamma_{sd}(G) + \gamma_{sd}(\overline{G})$.

More Known Results on $\gamma'_{sd}(G)$

1 (Xu 2005) **Conjecture:** If G is a graph with n vertices, then

$$\gamma'_{sd}(G) \leq n-1,$$

independent of the number m of edges.

(Karami, Sheikholeslami, Khodkar 2008) The conjecture is true for Eulerian graphs, graphs with all vertices of odd degree, and regular graphs. In addition,

$$\gamma'_{sd}(G) \leq \lceil 3n/2 \rceil.$$

3 (Haas, Wexler 2004) Upper and lower bounds are established for $\gamma_{sd}(G) + \gamma_{sd}(\overline{G})$.

Let $G \subset K_{m,n}$ be a **bipartite graph** with bipartition $\{w_1, w_2, \ldots, w_m\}$ and $\{b_1, b_2, \ldots, b_n\}$.

WLOG, G can be replaced with its m by n (0, 1)-biadjacency matrix $A = [a_{ij}]$, where the edges of G correspond to the 1s in A

A signing h of the edges of G corresponds to a signing h (of the 1s) of A, resulting in a $(0, \pm 1)$ -matrix A':

$$h:A\rightarrow A'$$
.

Let $G \subset K_{m,n}$ be a **bipartite graph** with bipartition $\{w_1, w_2, \ldots, w_m\}$ and $\{b_1, b_2, \ldots, b_n\}$.

WLOG, G can be replaced with its m by n (0,1)-biadjacency matrix $A = [a_{ij}]$, where the edges of G correspond to the 1s in A.

A signing h of the edges of G corresponds to a signing h (of the 1s) of A, resulting in a $(0, \pm 1)$ -matrix A':

$$h:A\to A'$$
.

Let $G \subset K_{m,n}$ be a **bipartite graph** with bipartition $\{w_1, w_2, \dots, w_m\}$ and $\{b_1, b_2, \dots, b_n\}$.

WLOG, G can be replaced with its m by n (0,1)-biadjacency matrix $A = [a_{ii}]$, where the edges of G correspond to the 1s in A.

A signing h of the edges of G corresponds to a signing h (of the 1s) of A, resulting in a $(0,\pm 1)$ -matrix A':

$$h:A\to A'$$
.

Let $G \subset K_{m,n}$ be a **bipartite graph** with bipartition $\{w_1, w_2, \dots, w_m\}$ and $\{b_1, b_2, \dots, b_n\}$.

WLOG, G can be replaced with its m by n (0,1)-biadjacency matrix $A = [a_{ij}]$, where the edges of G correspond to the 1s in A.

A signing h of the edges of G corresponds to a signing h (of the 1s) of A, resulting in a $(0,\pm 1)$ -matrix A':

$$h:A\to A'$$
.

Let $X = [x_{ij}]$ be an m by n matrix. The **cross** $C_{p,q}$ of an entry x_{pq} is the set of positions of X in row p and column q:

$$C_{pq} = \{(p,j) : 1 \le j \le n\} \cup \{(i,q) : 1 \le i \le m\}$$

$$\begin{bmatrix} x_{1q} \\ \vdots \\ x_{p1} & \cdots & x_{pq} & \cdots & x_{pn} \\ \vdots \\ \vdots \\ x_{mq} \end{bmatrix}.$$

The **cross sum** of the entry x_{pq} is the sum of the entries in its cross

Let $X = [x_{ij}]$ be an m by n matrix. The **cross** $C_{p,q}$ of an entry x_{pq} is the set of positions of X in row p and column q:

$$C_{pq} = \{(p,j) : 1 \le j \le n\} \cup \{(i,q) : 1 \le i \le m\}$$

$$\begin{bmatrix} x_{1q} \\ \vdots \\ x_{p1} & \cdots & x_{pq} & \cdots & x_{pn} \\ \vdots \\ \vdots \\ x_{mq} \end{bmatrix}.$$

The **cross sum** of the entry x_{pq} is the sum of the entries in its cross.

A signing $A' = [a'_{ij}]$ of A corresponds to a **edge dominating signing** of G provided the sum of the entries in the cross of each **nonzero entry** of A' is at least 1:

$$a_{pq}' + \sum_{j
eq q} a_{pj}' + \sum_{i
eq p} a_{iq}' \geq 1$$
 whenever $a_{pq}'
eq 0$.

Each cross must contain at least one more 1 than -1.

Such a signing of A is called a **dominating signing** of A (delete the word 'edge').

A signing $A' = [a'_{ij}]$ of A corresponds to a **edge dominating signing** of G provided the sum of the entries in the cross of each **nonzero entry** of A' is at least 1:

$$a_{pq}' + \sum_{j
eq q} a_{pj}' + \sum_{i
eq p} a_{iq}' \geq 1$$
 whenever $a_{pq}'
eq 0$.

Each cross must contain at least one more 1 than -1.

Such a signing of A is called a **dominating signing** of A (delete the word 'edge').

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}, \ A' = \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & 0 \\ 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ -1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

The **value** of a signing $A' = [a'_{ij}]$ of A is the sum of the entries of A': $\sigma(A') = \sum_{ij} a'_{ij}$.

In the example, the value is $\sigma(A')=8$.

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}, A' = \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & 0 \\ 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ -1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

The **value** of a signing $A' = [a'_{ij}]$ of A is the sum of the entries of A': $\sigma(A') = \sum_{ij} a'_{ii}$.

In the example, the value is $\sigma(A') = 8$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}, A' = \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & 0 \\ 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ -1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

The **value** of a signing $A' = [a'_{ij}]$ of A is the sum of the entries of A': $\sigma(A') = \sum_{ij} a'_{ij}$.

In the example, the value is $\sigma(A') = 8$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}, A' = \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & 0 \\ 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ -1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

The **value** of a signing $A' = [a'_{ij}]$ of A is the sum of the entries of A': $\sigma(A') = \sum_{ij} a'_{ij}$.

In the example, the value is $\sigma(A') = 8$.

The Problem

Given a (0,1)-matrix A, determine the minimum value of a dominating signing of A, the signed domination number γ'_{sd} of A:

$$\gamma'_{sd}(A) = \min\{\sigma(A') : A' \text{ is a dominating signing of } A\}.$$

$$\left[\begin{array}{cccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right], \left[\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{array}\right], \left[\begin{array}{cccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right]$$

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\gamma'_{sd} = 2 \qquad \gamma'_{sd} = 4 \qquad \gamma'_{sd} = 4$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\gamma'_{sd} = 2 \qquad \qquad \gamma'_{sd} = 4 \qquad \qquad \gamma'_{sd} = 4$$

Cycles in General

Let n be an integer with $n \ge 2$, and let P_n denote the full cycle permutation matrix of order n. Then

$$\gamma'_{sd}(I_n + P_n) = \begin{cases} \frac{2n}{3} & \text{if } 2n \equiv 0 \mod 3, \\ \frac{2n+2}{3} & \text{if } 2n \equiv 1 \mod 3, \\ \frac{2n+4}{3} & \text{if } 2n \equiv 2 \mod 3. \end{cases}$$

Xu's 2005 Conjecture for (0,1)-Matrices

Conjecture: If A is an m by n(0,1)-matrix, then

$$\gamma'_{sd}(A) \leq m+n-1.$$

Example:
$$A_{4,5} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Each 1 is in a cross containing only two 1s, and so no -1s are possible in a dominating signing: $\gamma'_{sd}(A_{4,5}) = 8 = 4 + 5 - 1$. Thus, in this case, equality holds in the conjecture.

Xu's 2005 Conjecture for (0,1)-Matrices

Conjecture: If A is an m by n(0,1)-matrix, then

$$\gamma'_{sd}(A) \leq m+n-1.$$

Example:
$$A_{4,5} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Each 1 is in a cross containing only two 1s, and so no -1s are possible in a dominating signing: $\gamma'_{sd}(A_{4,5}) = 8 = 4 + 5 - 1$. Thus, in this case, equality holds in the conjecture.

Xu's 2005 Conjecture for (0,1)-Matrices

Conjecture: If A is an m by n(0,1)-matrix, then

$$\gamma'_{sd}(A) \leq m+n-1.$$

Example:
$$A_{4,5} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Each 1 is in a cross containing only two 1s, and so no -1s are possible in a dominating signing: $\gamma'_{sd}(A_{4,5}) = 8 = 4 + 5 - 1$. Thus, in this case, equality holds in the conjecture.

 $\mathcal{A}(n, k)$ denotes the set of (0, 1)-matrices of order n with k 1s in every row and column $(1 \le k \le n)$.

Xu's conjecture, if true, implies that $\gamma'_{sd}(A) \leq 2n-1$ for $A \in \mathcal{A}(n,k)$.

Theorem:

$$\gamma'_{sd}(A) \leq \left\{ egin{array}{ll} n & ext{if k is odd} \ 2n-4 & ext{if k is even.} \end{array}
ight.$$

In fact, for the n by n matrix $J_{n,n}$ of all 1s (so $J_{n,n}\in\mathcal{A}(n,n)$), we have

$$\gamma_{sd}(J_{n,n})=n,$$

and thus for k odd, the upper bound as a function of n only cannot be improved.

Conjecture: If
$$k$$
 is even, then $\gamma'_{sd}(A) \leq \begin{cases} n & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$

 $\mathcal{A}(n, k)$ denotes the set of (0, 1)-matrices of order n with k 1s in every row and column $(1 \le k \le n)$.

Xu's conjecture, if true, implies that $\gamma'_{sd}(A) \leq 2n-1$ for $A \in \mathcal{A}(n,k)$.

Theorem:

$$\gamma'_{sd}(A) \leq \left\{ egin{array}{ll} n & ext{if k is odd} \ 2n-4 & ext{if k is even.} \end{array}
ight.$$

In fact, for the n by n matrix $J_{n,n}$ of all 1s (so $J_{n,n}\in\mathcal{A}(n,n)$), we have

$$\gamma_{sd}(J_{n,n})=n,$$

and thus for k odd, the upper bound as a function of n only cannot be improved.

Conjecture: If
$$k$$
 is even, then $\gamma'_{sd}(A) \leq \begin{cases} n & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$

 $\mathcal{A}(n, k)$ denotes the set of (0, 1)-matrices of order n with k 1s in every row and column $(1 \le k \le n)$.

Xu's conjecture, if true, implies that $\gamma'_{sd}(A) \leq 2n-1$ for $A \in \mathcal{A}(n,k)$.

Theorem:

$$\gamma'_{sd}(A) \le \begin{cases} n & \text{if } k \text{ is odd} \\ 2n-4 & \text{if } k \text{ is even.} \end{cases}$$

In fact, for the n by n matrix $J_{n,n}$ of all 1s (so $J_{n,n} \in \mathcal{A}(n,n)$), we have

$$\gamma_{sd}(J_{n,n})=n,$$

and thus for k odd, the upper bound as a function of n only cannot be improved.

Conjecture: If k is even, then $\gamma'_{sd}(A) \leq \begin{cases} n & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$

 $\mathcal{A}(n, k)$ denotes the set of (0, 1)-matrices of order n with k 1s in every row and column $(1 \le k \le n)$.

Xu's conjecture, if true, implies that $\gamma'_{sd}(A) \leq 2n-1$ for $A \in \mathcal{A}(n,k)$.

Theorem:

$$\gamma'_{sd}(A) \le \begin{cases} n & \text{if } k \text{ is odd} \\ 2n-4 & \text{if } k \text{ is even.} \end{cases}$$

In fact, for the n by n matrix $J_{n,n}$ of all 1s (so $J_{n,n} \in \mathcal{A}(n,n)$), we have

$$\gamma_{sd}(J_{n,n})=n,$$

and thus for k odd, the upper bound as a function of n only cannot be improved.

Conjecture: If k is even, then $\gamma'_{sd}(A) \leq \begin{cases} n & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$

Conjecture: If
$$k$$
 is even, then $\gamma'_{sd}(A) \leq \begin{cases} n & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$

These inequalities are attainable: If n is even, by $J_{n,n}$ with k=n (so even), and if n is odd, by the following theorem when n is odd and k=n-1 (so even).

Theorem:

$$\gamma_{sd}(J_{n,n}-I_n)=\left\{ egin{array}{ll} n & ext{if } n ext{ is even} \\ n-1 & ext{if } n ext{ is odd.} \end{array}
ight.$$

Note that, in general, to get an exact signed domination number, it is required to obtain a dominating signing with a specified number of -1s and then show that no greater number of -1s is possible in a dominating signing.

To indicate the sometimes delicate nature of the signed domination number of a matrix, recall that

$$\gamma_{sd}'(J_{n,n})=n$$
 for all $n\geq 1$, but

Theorem:

• If $J_{n,n}^{\#}$ is the matrix obtained from $J_{n,n}$ by replacing a 1 with a 0, then

$$\gamma_{sd}(J_{n,n}^{\#})=n+1.$$

A signing that gives the value n+1 is (assuming the 0 is in the (n, n) position)

n even:
$$\begin{bmatrix} 2I_{n/2} - J_{n/2} & J_{n/2} \\ J_{n/2} & -J_{n/2}^{\#} \end{bmatrix}$$

Remark continued

n odd:
$$-I_n^{\#} - P_n - \cdots - P_n^{(n-3)/2} + P_n^{(n-1)/2} + \cdots + P_n^{n-1}$$
.

• For the *n* by n+1 matrix $J_{n,n+1}$ of all 1s,

$$\gamma_{sd}'(J_{n,n+1})=2n.$$

A best signing is obtained by taking a best signing for $J_{n,n}$ and appending a column of all 1s.

Remark continued

n odd:
$$-I_n^{\#} - P_n - \cdots - P_n^{(n-3)/2} + P_n^{(n-1)/2} + \cdots + P_n^{n-1}$$
.

• For the *n* by n+1 matrix $J_{n,n+1}$ of all 1s,

$$\gamma'_{sd}(J_{n,n+1})=2n.$$

A best signing is obtained by taking a best signing for $J_{n,n}$ and appending a column of all 1s.

Lower Bound on Signed Domination Number

Theorem: Let A be a (0,1)-matrix of order n with k 1s in each row and column. Then

$$\gamma'_{sd}(A) \geq \frac{kn}{2k-1}.$$

More generally, if G is a graph of order n which is regular of degree k, then

$$\gamma'_{sd}(G) \geq \frac{kn}{2(2k-1)}.$$

Can equality be attained in these inequalities? For equality to hold, all cross sums must equal 1 (the minimum possible).

Lower Bound on Signed Domination Number

Theorem: Let A be a (0,1)-matrix of order n with k 1s in each row and column. Then

$$\gamma'_{sd}(A) \geq \frac{kn}{2k-1}.$$

More generally, if G is a graph of order n which is regular of degree k, then

$$\gamma'_{sd}(G) \geq \frac{kn}{2(2k-1)}.$$

Can equality be attained in these inequalities? For equality to hold, all cross sums must equal 1 (the minimum possible).

Lower Bound on Signed Domination Number

Theorem: Let A be a (0,1)-matrix of order n with k 1s in each row and column. Then

$$\gamma'_{sd}(A) \geq \frac{kn}{2k-1}.$$

More generally, if G is a graph of order n which is regular of degree k, then

$$\gamma'_{sd}(G) \geq \frac{kn}{2(2k-1)}.$$

Can equality be attained in these inequalities? For equality to hold, all cross sums must equal 1 (the minimum possible).

Equality in the Lower Bound

Theorem: For each k, the minimum number n of vertices in a regular graph G of degree k satisfying $\gamma'_{sd}(G) = \frac{kn}{2(2k-1)}$ equals

$$(2k-1)C_{k-1}$$

where C_{k-1} is the (k-1)st Catalan number.

Moreover,

- 1) If $\gamma'_{sd}(G) = \frac{kn}{2(2k-1)}$, then n is a multiple of $(2k-1)C_{k-1}$ and any such multiple is attainable.
- 2 If G is bipartite, then the minimum number of vertices is

$$n = 2(2k - 1)C_{k-1}$$

and this is always attainable.

Equality in the Lower Bound

Theorem: For each k, the minimum number n of vertices in a regular graph G of degree k satisfying $\gamma'_{sd}(G) = \frac{kn}{2(2k-1)}$ equals

$$(2k-1)C_{k-1}$$

where C_{k-1} is the (k-1)st Catalan number. Moreover.

- 1 If $\gamma'_{sd}(G) = \frac{kn}{2(2k-1)}$, then n is a multiple of $(2k-1)C_{k-1}$ and any such multiple is attainable.
- ② If G is bipartite, then the minimum number of vertices is

$$n = 2(2k - 1)C_{k-1}$$

and this is always attainable.

Equality in the Lower Bound

Theorem: For each k, the minimum number n of vertices in a regular graph G of degree k satisfying $\gamma'_{sd}(G) = \frac{kn}{2(2k-1)}$ equals

$$(2k-1)C_{k-1}$$

where C_{k-1} is the (k-1)st Catalan number. Moreover.

- 1 If $\gamma'_{sd}(G) = \frac{kn}{2(2k-1)}$, then n is a multiple of $(2k-1)C_{k-1}$ and any such multiple is attainable.
- $\mathbf{2}$ If G is bipartite, then the minimum number of vertices is

$$n = 2(2k-1)C_{k-1}$$

and this is always attainable.

Example of Equality in the Lower Bound (k = 3)

Bipartite Example of Equality (k = 3)

Bipartite Example is a Biadjacency Matrix

$$k=3$$
 and $n=10$, $G\subseteq K_{10,10}$, $A=|A'|$, $\gamma'_{sd}(A)=6$

$$A' = \begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & -1 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

Semi-Regular Matrices

A semiregular matrix is an m by n (0,1)-matrix with k 1s in each row and l 1s in each column. Thus km = ln.

Example:
$$(m = 4, n = 6; k = 3, l = 2)$$

Remark: Since $\gamma'_{sd}(A) = \gamma'_{sd}(A^T)$, there is no loss in generality in assuming that $m \le n$ (and so $k \ge l$).

Semi-Regular Matrices

A semiregular matrix is an m by n (0,1)-matrix with k 1s in each row and l 1s in each column. Thus km = ln.

Example:
$$(m = 4, n = 6; k = 3, l = 2)$$

Remark: Since $\gamma'_{sd}(A) = \gamma'_{sd}(A^T)$, there is no loss in generality in assuming that $m \le n$ (and so $k \ge l$).

$J_{m,n}$ Part I.

Let $J_{m,n}$ denote that m by n matrix of all 1s (so semiregular with k = n, l = m).

Akbari, Bolouki, Hatami, Siami (2009) (and independently and in a somewhat different way by us) evaluated $\gamma'_{sd}(J_{m,n})$ for all m and n. In our formulation, we have:

• If *m* is even and *n* is even, then

$$\gamma'_{sd}(J_{m,n}) = \left\{ egin{array}{ll} n & ext{if } m \leq n \leq 2m-1, \\ 2m & ext{if } 2m \leq n. \end{array} \right.$$

If m is even and n is odd, then

$$\gamma_{sd}(J_{m,n}) = \begin{cases} 2m & \text{if } m \le n < 2m, \\ n+1 & \text{if } 2m \le n < 3m, \\ 3m & \text{if } 3m \le n. \end{cases}$$

$J_{m,n}$ Part I.

Let $J_{m,n}$ denote that m by n matrix of all 1s (so semiregular with k = n, l = m).

Akbari, Bolouki, Hatami, Siami (2009) (and independently and in a somewhat different way by us) evaluated $\gamma'_{sd}(J_{m,n})$ for all m and n. In our formulation, we have:

• If *m* is even and *n* is even, then

$$\gamma'_{sd}(J_{m,n}) = \left\{ egin{array}{ll} n & ext{if } m \leq n \leq 2m-1, \\ 2m & ext{if } 2m \leq n. \end{array} \right.$$

If m is even and n is odd, then

$$\gamma_{sd}(J_{m,n}) = \begin{cases} 2m & \text{if } m \leq n < 2m, \\ n+1 & \text{if } 2m \leq n < 3m, \\ 3m & \text{if } 3m \leq n. \end{cases}$$

$J_{m,n}$ Part II

• If *m* is odd and *n* is even, then

$$\gamma'_{sd}(J_{m,n}) = \left\{ egin{array}{ll} 2m & ext{if } m \leq n < 2m, \\ n & ext{if } 2m \leq n < 3m - 1, \\ 3m - 1 & ext{if } 3m - 1 \leq n. \end{array} \right.$$

If m is odd and n is odd, then

$$\gamma'_{sd}(J_{m,n}) = \left\{ egin{array}{ll} n & ext{if } m \leq n \leq 2m-1, \\ 2m-1 & ext{if } 2m \leq n. \end{array}
ight.$$

In particular, in all cases, for n large enough, $\gamma'_{sd}(J_{m,n})$ depends only on m.

$J_{m,n}$ Part II

• If *m* is odd and *n* is even, then

$$\gamma'_{sd}(J_{m,n}) = \begin{cases} 2m & \text{if } m \leq n < 2m, \\ n & \text{if } 2m \leq n < 3m - 1, \\ 3m - 1 & \text{if } 3m - 1 \leq n. \end{cases}$$

If m is odd and n is odd, then

$$\gamma'_{sd}(J_{m,n}) = \left\{ egin{array}{ll} n & ext{if } m \leq n \leq 2m-1, \\ 2m-1 & ext{if } 2m \leq n. \end{array} \right.$$

In particular, in all cases, for n large enough, $\gamma'_{sd}(J_{m,n})$ depends only on m.

Semi-regular Matrices: General Case I

Let A be an m by n (0,1)-matrix with m < n and k 1s in each row and l 1s in each column (thus km = ln).

Case: k and l even

$$\gamma'_{sd}(A) \le 2m = m + m \le m + n - 1.$$

Case: k and l odd

$$\gamma'_{sd}(A) \le m+n-1.$$

Semi-regular Matrices: General Case I

Let A be an m by n (0,1)-matrix with m < n and k 1s in each row and l 1s in each column (thus km = ln).

Case: k and l even

$$\gamma'_{sd}(A) \le 2m = m + m \le m + n - 1.$$

Case: k and l odd

$$\gamma'_{sd}(A) \leq m+n-1.$$

Semi-regular Matrices: General Case I

Let A be an m by n (0,1)-matrix with m < n and k 1s in each row and l 1s in each column (thus km = ln).

Case: k and l even

$$\gamma'_{sd}(A) \le 2m = m + m \le m + n - 1.$$

Case: k and / odd

$$\gamma'_{sd}(A) \leq m+n-1.$$

Semi-regular Matrices: General Case II

Case: k even, l odd, n > 3m

$$\gamma_{sd}'(A) \leq 4m \leq m+n-1.$$

Case: k even, l odd, $2m < n \le 3m$

$$\gamma'_{sd}(A) \le n \le m+n-1.$$

Case: k even, l odd, $m < n \le 2m$

$$\gamma'_{sd}A \le 2m \le m+n-1.$$

Case: k odd, l even, n > 2m

$$\gamma'_{sd}(A) \le 3m \le m + n - 1.$$

Semi-regular Matrices: General Case II

Case: k even, l odd, n > 3m

$$\gamma_{sd}'(A) \leq 4m \leq m+n-1.$$

Case: k even, l odd, $2m < n \le 3m$

$$\gamma'_{sd}(A) \le n \le m+n-1.$$

Case: k even, l odd, $m < n \le 2m$

$$\gamma'_{sd}A \le 2m \le m+n-1.$$

Case: k odd, l even, n > 2m

$$\gamma'_{sd}(A) \le 3m \le m+n-1.$$

Semi-regular Matrices: General Case II

Case: k even, l odd, n > 3m

$$\gamma_{sd}'(A) \leq 4m \leq m+n-1.$$

Case: k even, l odd, $2m < n \le 3m$

$$\gamma'_{sd}(A) \le n \le m+n-1.$$

Case: k even, l odd, $m < n \le 2m$

$$\gamma'_{sd}A \leq 2m \leq m+n-1.$$

Case: k odd, l even, n > 2m

$$\gamma'_{sd}(A) \leq 3m \leq m+n-1.$$

Semi-regular Matrices: General Case III

Case: k odd, l even, $m < n \le 2m$

Unable to show that $\gamma'_{sd} \leq m + n - 1$.

Techniques

- Construction
- Counting
- Given a (0,1)-matrix A, existence of a (0,1)-matrix B with $A \leq B$ and with bounds on row and column sums.
- An old theorem of Vogel concerning the maximum number of 1s one can pull out of a (0,1)-matrix A without exceeding given row and column sum bounds.

Two Problems we'd Like to Solve

1 If k is odd, l is even, and $m < n \le 2m$, then

$$\gamma'_{sd} \leq m + n - 1.$$

2 If A is in A(n, k) with k even, then

$$\gamma'_{sd}(A) \le \begin{cases} n & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$$