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Why Association Schemes?

I Coding Theory

I “Distinguishability”

I E.g., binary codes in
Hamming scheme H(n, q)

I Design Theory

I “Approximation”

I E.g, t-(v , k , λ) designs
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Six Vectors in R2

We will start by looking at a very simple example.
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Spherical Code

A spherical code is simply a finite non-empty subset of the unit
sphere.

X ⊂ Sm−1

(We’ll set v = |X | and assume v > m.)
Example: m = 2, v = 6
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Gram Matrix
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 =: G

William J. Martin The Ideal of E1



Prelude
Definitions from a Simple Example

Some Theory
The Ideal

The 6-cycle

Schur (Hadamard) Multiplication
G ◦ G =

1

4
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Schur Multiplication Again
G ◦ G ◦2 =
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Entrywise Powers of G Span a Vector Space

Consider the vector space A spanned by{
J,G ,G ◦2,G ◦3,G ◦4, . . .

}
where the all-ones matrix J is G ◦0 and G = G ◦1.
Clearly, in our case, this space has dimension four and admits a
basis of 01-matrices.
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Symmetric Association Scheme

Let us say that the set X determines an association scheme if this
vector space A is closed under matrix multiplication.
Observe:

I A is closed under Schur multiplication;

I A contains the identity, J, for Schur multiplication;

I A is closed under ordinary multiplication;

I Since the points in X are distinct, A contains the identity, I ,
for ordinary multiplication;

I Since the matrices in A are all symmetric, they commute.
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Bose-Mesner Algebra

The vector space/ring/ring of matrices A is called the Bose-Mesner
algebra. This is equivalent to a symmetric association scheme.
We may always construct two canonical bases:

{A0 = I ,A1, . . . ,Ad}

(01-matrices which sum to J (pairwise disjoint support));

{E0 =
1

v
J,E1, . . . ,Ed}

(pairwise orthogonal idempotents summing to I ).
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Cometric (Q-polynomial) Association Scheme
Let us say that the association scheme (X , {Ai}di=0) is cometric
with respect to X if

I for each k , the vector space{
J,G ,G ◦2, . . . ,G ◦k

}
is closed under multiplication.

Observe: Eigenvalues of G must be 0 and v/m, assuming X
spans Rm. Then we can take E1 = m

v G ,

E2 = ω2(G ◦ G ) + ω1G + ω0J

and Ej = qj ◦ (E1) where qj is a polynomial of degree exactly j
(0 ≤ j ≤ d)
(Notation: f ◦ (M) is matrix obtained by applying f to each entry.)

William J. Martin The Ideal of E1
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Back to the Example
For the hexagon, we obtain

A0 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 ,A1 =



0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0



A2 =



0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

 ,A3 =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


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Back to the Example

For the hexagon, we obtain

E0 =
1

6
J, E1 =

1

3
G ,

E2 =
1

6
(3A0 + 3A3 − J), E3 =

1

6
(A0 − A1 + A2 − A3)

William J. Martin The Ideal of E1



Prelude
Definitions from a Simple Example

Some Theory
The Ideal

The 6-cycle

Another Example: E8 Root Lattice

I even unimodular lattice in R8

I kissing number 240 (optimal)

I can be identified with the integral Cayley numbers

We will focus on the spherical code consisting of the 240 (scaled)
shortest vectors.
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Shortest vectors

The 240 norm
√

8 vectors:

I (06,±2) – any two positions, all possible signs (4 · 28 = 112
vectors)

I (±1,±1,±1,±1,±1,±1,±1,±1) – even number of minus
signs (27 = 128 vectors)

Scale these to unit vectors to get X ⊂ S7.
Among these vectors, there are only 4 non-zero angles. This gives
us a 4-class cometric association scheme.

William J. Martin The Ideal of E1
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Orthogonality relations

Ai =
d∑

j=0

PjiEj Ej =
1

v

d∑
i=0

QijAi

The change-of-basis matrices P and Q are called the “first and
second eigenmatrices” of the scheme. A scaled version of P is
called the “character table”:

PQ = vI

MP = Q>K

where M is a diagonal matrix of multiplicities mj = rank Ej and K
is a diagonal matrix of valencies vi = rowsumAi .

William J. Martin The Ideal of E1
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A taste of duality

AiAj =
d∑

k=0

pk
ij Ak Ei ◦ Ej =

1

v

d∑
k=0

qk
ij Ek

Ai ◦ Aj = δijAi EiEj = δijEi

AiEj = PjiEj Ai ◦ Ej =
1

v
QijAi

d∑
i=0

Ai = J
d∑

j=0

Ej = I

A0 = I E0 =
1

v
J
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Metric and Cometric Schemes

Philippe Delsarte

The scheme is metric (or P-polynomial) if there is an ordering of
the Ai for which

I pk
ij = 0 whenever k > i + j

I pi+j
ij > 0 whenever i + j ≤ d

The scheme is cometric (or Q-polynomial) if there is an ordering of
the Ej for which

I qk
ij = 0 whenever k > i + j

I qi+j
ij > 0 whenever i + j ≤ d

William J. Martin The Ideal of E1
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Main Results

I Delsarte: initial list of equivalences

I Terwilliger: balanced set condition (and much more in
P-poly case)

I Suzuki (1998): Essentially, there can be at most two
Q-polynomial orderings

I Suzuki (1998): Essentially, the imprimitive ones are either
Q-bipartite (“projective”) or Q-antipodal (“linked”)

I Muzychuk, Williford and WJM: Q-antipodal schemes can
always be dismantled

I Williford and WJM: For any fixed m1 > 2, there are only
finitely many cometric schemes

William J. Martin The Ideal of E1
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Bannai-Ito Conjectures

Conjecture (Bannai & Ito)

Every primitive cometric scheme of sufficiently large diameter d is
metric as well.

Perhaps easier?:
Order relations “naturally” so that m1 > Q11 > · · · > Qd1.
Does A1 have d + 1 distinct eigenvalues?
Is there some constant δ ≥ 1 such that pk

1j = 0 whenever
|k − j | > δ?

William J. Martin The Ideal of E1
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The Conjectures of Bannai and Ito
Let Vj = colspEj denote the j th eigenspace of the cometric scheme.

Conjecture (Bannai & Ito)

The multiplicities m0,m1, . . . ,md of a cometric association
scheme, given by mj = dim Vj form a unimodal sequence:

m0 < m1 ≤ m2 ≤ · · · ≤ mr ≥ mr+1 ≥ · · · ≥ md .

Conjecture (D. Stanton)

For j < d/2,
mj ≤ mj+1, mj ≤ md−j .

Theorem (Caughman & Sagan, 2001)

If (X ,R) is also dual thin, then Stanton’s conjecture holds.
William J. Martin The Ideal of E1
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A Source of Examples: Spherical Designs

Spherical t-Design: Finite subset X ⊂ Sm−1 for which

1

|X |
∑
x∈X

f (x) =
1

‖Sm−1‖

∫
f (x)dx

for all polynomials f in m variables of total degree at most t.
Example: The 196,560 shortest vectors of the Leech lattice form a
spherical 11-design in R24.
Seymour and Zaslavsky (1984): Such finite sets X exist for all t
in each dimension m.

William J. Martin The Ideal of E1
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Cometric schemes from spherical designs

Theorem (Delsarte,Goethals,Seidel (1977))

The number s of non-zero angles in a spherical t-design is at least
t/2. If t ≥ 2s − 2, then X carries a cometric association scheme.

Examples: 24-cell (t = 5, s = 4); E6 (t = 5, s = 4); E8 (t = 7,
s = 4); Leech (t = 11, s = 6).

William J. Martin The Ideal of E1
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Cometric schemes from combinatorial designs

Defn: A Delsarte t-design in a cometric scheme (X ,A) is any
non-trivial subset Y of X whose characteristic vector χY is
orthogonal to V1, . . . ,Vt .
Examples: orthogonal arrays (“dual codes”), block designs.

Theorem (Delsarte (1973))

If s non-zero relations occur among pairs of elements of Y , then
t ≤ 2s. If t ≥ 2s − 2, then Y carries a cometric association
scheme.

William J. Martin The Ideal of E1
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Cometric schemes from semilattices

Defn: The dual width w∗ of Y ⊆ X is the maximum j in the
Q-polynomial ordering for which EjχY 6= 0.

Theorem (Brouwer, Godsil, Koolen, WJM (2003))

For any Y in a d-class cometric scheme, w∗ ≥ d − s. If equality
holds, then Y carries a cometric association scheme.

William J. Martin The Ideal of E1
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Group schemes

Every finite group G yields an association scheme via the center of
the group algebra of its right regular representation g 7→ Rg .
Conjugacy classes: C0 = {e}, C1, . . . , Cn

Ai =
∑
g∈Ci

Rg

Extended conjugacy classes: C′0 = {e}, C′i = Ci ∪ (Ci )−1

Symmetrized scheme:

Ai =
∑
g∈C′

i

Rg

William J. Martin The Ideal of E1
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Cometric group schemes

Theorem (Kiyota and Suzuki (2000))

The symmetrized group scheme is cometric if and only if G is one
of the following groups:

I Zn

I S3

I A4

I SL(2, 3)

I F21 = Z7 o Z3

William J. Martin The Ideal of E1
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A Census

The following cometric association schemes are known:

I Q-polynomial distance-regular graphs (i.e., metric and
cometric)

I duals of metric translation schemes

I bipartite doubles of Hermitian forms dual polar spaces
[2A2d−1(r)] (Bannai & Ito)

I schemes arising from linked systems of symmetric designs
(3-class, Q-antipodal) [Cameron & Seidel]

I extended Q-bipartite doubles of linked systems (4-class,
Q-bipartite and Q-antipodal) [Muzychuk, Williford, WJM]

I real MUBS [Bannai & Bannai, LeCompte & Owens & WJM]

William J. Martin The Ideal of E1
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Census

census of cometric schemes, continued:

I the block schemes of the Witt designs 4-(11,5,1), 5-(24,8,1)
and a 4-(47,11,8) design (Delsarte) (primitive 3-class schemes
on 66, 759 and 4324 vertices resp.)

I the block schemes of the 5-(12,6,1) design and the
5-(24,12,48) design (Q-bipartite 4-class schemes on 132 and
2576 vertices, resp.)

I shortest vectors in lattices E6, E7, E8 (4-class, Q-bipartite)

I the scheme on the vertices of the 24-cell (4-class, Q-bipartite,
Q-antipodal, 24 vertices)

William J. Martin The Ideal of E1
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Census

census of cometric schemes, continued:

I the scheme on the shortest vectors in the Leech lattice
(6-class, Q-bipartite, 196560 vertices)

I 5 schemes arising from derived designs of this:

3-class 2025 vertices primitive
4-class 2816 Q-bipartite
4-class 4600 Q-bipartite
4-class 7128 primitive
5-class 47104 primitive

I Q-bipartite quotient of Leech lattice example (3-class,
primitive)

I three more schemes arising from lattices (4-, 5-, 11-class,
Q-bipartite)

William J. Martin The Ideal of E1
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Census

census of cometric schemes, continued:

I three schemes from dismantling dual schemes of metric
translation schemes (4-, 5-, and 6-class, all Q-antipodal)

I One infinite family (“triality”) and three exceptional
Q-antipodal schemes with 4 classes [D.G. Higman]

I One infinite family from hemisystems in generalized
quadrangles (4-class, Q-antip.) [Cossidente & Penttila]

I One very new infinite family (3-class, primitive) [Penttila &
Williford]
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Dismantlability

Theorem (Muzychuk, Williford, WJM (2007))

Every Q-antipodal scheme is dismantlable:
the subscheme induced on any non-trivial collection of w ′

Q-antipodal classes is cometric for w ′ ≥ 1 and Q-antipodal with d
classes for w ′ > 1.

William J. Martin The Ideal of E1
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Dismantlability
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Dismantlability
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Trivial cases

I halved graph of a bipartite Q-polynomial distance-regular
graph

I linked systems of symmetric designs (by defn.)
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A new example via dismantling
Coset graph of the shortened ternary Golay code:

I intersection array {20, 18, 4, 1; 1, 2, 18, 20}

I antipodal distance-regular graph belonging to a translation
scheme

I dual association scheme is Q-antipodal on v = 243 vertices
with w = 3 Q-antipodal classes

I Remove one of these to obtain a Q-antipodal scheme on 162
vertices having w = 2 Q-antipodal classes which is not metric

I parameters

d = 4, v = 162, ι∗(X ,A) = {20, 18, 3, 1; 1, 3, 18, 20}

formally dual to those of an unknown diameter
four bipartite distance-regular graph.

William J. Martin The Ideal of E1
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A new example via dismantling
Coset graph of the shortened ternary Golay code:

I intersection array {20, 18, 4, 1; 1, 2, 18, 20}
I antipodal distance-regular graph belonging to a translation

scheme

I dual association scheme is Q-antipodal on v = 243 vertices
with w = 3 Q-antipodal classes
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Dismantling the dual of a coset graph

I Two more distance-regular coset graphs yield Q-antipodal
schemes with five and six classes.

I Parameters
d = 5, v = 486,

ι∗(X ,A) = {22, 20,
27

2
, 2, 1; 1, 2,

27

2
, 20, 22}, w = 2

d = 6, v = 1536,

ι∗(X ,A) = {21, 20, 16, 8, 2, 1; 1, 2, 4, 16, 20, 21}, w = 3.

I This last scheme is formally dual to a distance-regular
graph which was proven not to exist by Brouwer, Cohen
and Neumaier.
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The 4-cycle

E1 =
1

2


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1


Ring homomorphism γ : C[Z1,Z2,Z3,Z4]→ C4 takes

Z1 7→
1

2


1
0
0
−1

 , Z2 7→
1

2


0
1
−1

0

 , etc.
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The 4-cycle

E1 =
1

2


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1


Ring homomorphism γ : C[Z1,Z2,Z3,Z4]→ C4 takes

4Z1+2Z2 7→


2
1
−1
−2

 , Z1Z2 7→ 0, Z1Z4 7→
1

4


−1

0
0
−1

 , etc.
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An elementary ring homomorphism

In general, let (X ,R) be a cometric association scheme on v
vertices with first primitive idempotent E1.
Let γ : C[Z1, . . . ,Zv ]→ CX via

Za 7→ ā

(the a-column of E1) and extending linearly and via the Schur
product ◦.
E.g., ZaZ 2

b − 3Za 7→ (ā ◦ b̄ ◦ b̄)− 3ā
We are interested in I = ker γ.
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The Q-Ideal

Object of study: I = ker γ

Theorem
I is the set of polynomials in C[Z1, . . . ,Zv ] which vanish on each
column of E1

Here, v = |X | is the number of vertices in the cometric scheme
(X ,R). Equivalently, we can look at an ideal IN in the ring
C[Y1, . . . ,Ym1 ].

William J. Martin The Ideal of E1



Prelude
Definitions from a Simple Example

Some Theory
The Ideal

Small degree
Conjecture

The Q-Ideal

Observe: The columns of E1, and hence the entire association
scheme and its parameters, can be recovered from I

Observe: The automorphism group of the association scheme acts
on the polynomial ring preserving the ideal I.
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Some Motivation

I Delsarte, Goethals, Seidel: If u ∈ Vi and v ∈ Vj and
qk
ij = 0, then u ◦ v⊥Vk .

I We often have expressions of the form

c(u ◦ v ◦ w)− d(v ◦ v)

and we want to know when two of these are equal.

I Nice designs and codes can be efficiently encoded as
polynomials. E.g.

I Fano plane D in J(7, 3) yields subideal of I consisting of
those polynomials involving only {Za|a ∈ D}
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Very small degree

Object of study: I = ker γ

I I contains v −m1 linearly independent linear polynomials,
spanning the nullspace of E1

I I contains all multiples of

Z 2
1 + Z 2

2 + · · ·+ Z 2
v −

m1

v
=: ‖ · ‖2 − c
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Small Degree Generators

In the n-cube, the code C = { a | a1 = 0} has width n− 1 and dual
width w∗ = 1. (I.e., EjxC = 0 for all j > w∗.)

This gives a quadratic polynomial in our ideal:

F =

(∑
c∈C

Zc −
1

2

)(∑
c∈C

Zc +
1

2

)

As C ranges over the dim. n − 1 subcubes, this gives a set of
quadratic polynomials which generate IN .
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Small Degree Generators

The ideal I is generated by linear and quadratic polynomials for
the following classical families of association schemes:

I Hamming schemes H(n, q)

I Johnson schemes J(n, k)

I Grassman schemes Gq(n, k)

I bilinear forms schemes Bq(m, n)

Proof: There are enough subsets of dual width one that each
vertex is uniquely determined by those such subsets which contain
it.
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More Small Degree Generators

I 24-cell: I generated by polys. of degree at most four

I E6: ” degree at most three

I E7: ” degree at most four

I E8: ” degree at most four

I Leech lattice: will require polynomials of degree six, at least.
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Spherical t-Designs

Recall: A subset X of the unit sphere Sm−1 is a spherical t-design
if, for every polynomial F in m variables, the average of F over X
is the same as the average of F over the sphere.
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Spherical t-Designs

Observe: If X is a spherical 2s-design and F is a polynomial in I
of degree ≤ s, then F is a multiple of ‖ · ‖2 − c .

Proof: F 2 is strictly positive and zero at every point of X . Since
its degree is ≤ 2s, it must be zero on the entire sphere.
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Some Spherical t-Designs

I 24-cell: m = 4, |X | = 24, t = 5

I E6: m = 6, |X | = 72, t = 5

I E7: m = 7, |X | = 126, t = 5

I E8: m = 8, |X | = 240, t = 7 (tight)

I Leech lattice: m = 24, |X | = 196560, t = 11
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How fast can mj grow?

We can now view the j th eigenspace of the association scheme as
the space of polynomials of degree j on X .
The multiplicity mj is the dimension of this space.

Absolute Bound:
∑

k:qk
ij>0 mk ≤ mimj

gives

m2 ≤
(

m + 1

2

)
− 1

Equality holds iff q1
11 = 0 and q2

11 = 2m
m+2 .
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How fast can mj grow?

m2 ≤
(

m + 1

2

)
− 1

Equality holds iff q1
11 = 0 and q2

11 = 2m
m+2 .

This occurs for the 24-cell, E6, E7, E8, the Leech lattice and
several of its derived designs.
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What is the dual concept to a Moore graph?

Eiichi Bannai determined that the dual object of a Moore graph is
a tight spherical t-design. So the only examples are polygons, the
icosahedron,

I (min length vectors of the) Leech (lattice)

I a derived spherical design of this on 4600 points

I E8

I two derived designs of E8

I a system of 276 equiangular lines in R23 arising from Co.3
I a strongly regular graph on 275 vertices related to this one

Any other tight spherical t-design must have t ∈ {4, 5, 7} and
special parameters.
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Imprimitive Q-polynomial Schemes

If the scheme is Q-bipartite, then −X = X . So, eliminating
‖ · ‖2 − c , I can be expressed as a homogeneous ideal.

If the scheme is Q-antipodal with ideal I and some Q-antipodal
subobject (via dismantling) has ideal J , then I ⊆ J .

(Can this help us extend known Q-antipodal schemes?)
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Homotopy

Let Γ be a distance-regular graph (metric association scheme) and
let x be any vertex. Equivalence classes of closed walks in Γ
beginning and ending at x form a group under concatenation and
reversal.
This is the fundamental group π(Γ, x) of Γ and essentially does not
depend on x .
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A Sequence of Homotopy Groups

H. Lewis (2000):
The essential length of a walk w of the form pqp−1 is at most the
length of walk q.
Definition: Let π(Γ, x , k) be the subgroup of π(Γ, x) generated by
equivalence classes of closed walks of essential length at most k .

Theorem (Lewis)

If Γ is a distance-regular graph of diameter d, then

{e} = π(Γ, x , 0) = π(Γ, x , 1) = π(Γ, x , 2) ⊆ · · ·

⊆ π(Γ, x , 2d + 1) = π(Γ, x).
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Translation Schemes

A translation scheme is a scheme (X ,R) where X is a finite
abelian group and (a, b) ∈ Ri implies (a + c, b + c) ∈ Ri .

We assume (X ,R) is a cometric translation scheme and then there
is a distance-regular graph Γ defined on the group X † of characters
of X .

Some set S1 of characters forms a basis for the first eigenspace in
the Q-polynomial ordering of (X ,R). The graph has edges
(ψ,ψ ◦ χ) for χ ∈ S1.

So if S1 = {χ1, . . . , χm}, then each walk w = ψ0, ψ1, . . . in Γ can
be described by giving its starting point ψ0, together with a
sequence h1, h2, . . . , hs for which ψj = ψj−1 ◦ χhj

.
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Homotopy and Duality

In a cometric translation scheme, each closed walk in the dual
distance-regular graph Γ yields a polynomial in IN and these
generate IN :

Fw = Yh1Yh2 · · ·Yhs − 1

So if Lewis’s subgroup π(Γ, x , k) is the entire fundamental group
π(Γ, x), then the ideal IN is generated by polynomials of total
degree at most (k + 1)/2.
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Cycles are special

Here is a Gröbner basis for the ideal IN (dimension two) in the
case of the n-cycle:

X 2 + Y 2 − 1, (X − 1)(X − ζ1) · · · (X − ζbn/2c)

where (with α = 2π
n ) we have ζk = cos(kα).
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The Q-Ideal Conjecture

Conjecture

There is a universal constant K such that, for any cometric
association scheme with m1 > 2, the ideal I is generated by
polynomials of total degree at most K .
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A Partial Result

Theorem (Williford & WJM, 2009)

For each integer m > 2, there is an integer K (m) such that, for
any cometric association scheme with rank E1 = m, the ideal I is
generated by polynomials of total degree at most K (m).

Remark: We really proved simply that, for m > 2, there can be
only finitely many cometric association schemes with m1 = m.
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Consequences

We saw that there exist spherical t-designs for all t.
If this universal bound K exists, then no spherical t-design with
t > 2K can give a cometric association scheme (except polygons).
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The End

Thank you all.

Happy Birthday Reza!

Happy Birthday IPM.

William J. Martin The Ideal of E1


	Prelude
	Definitions from a Simple Example
	The 6-cycle

	Some Theory
	Main Parameters
	Main Results and Conjectures
	The known examples
	Dismantlability

	The Ideal
	Small degree
	Conjecture


