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Chain Partitions of Normalized Matching Posets

Chains & Posets

Chain Partitions in Posets

Definition

P = finite partially ordered set (poset)

A chain in P = a linearly ordered subset of P.
i.e., a0, a1, . . ., an is a chain of size n + 1 (and length n) in P if

a0 < a1 < . . . < an.

Question

P a poset.
µ = (µ1, µ2, . . . , µk) an integer partition of |P|.
i.e., µ1 ≥ µ2 ≥ · · · ≥ µk positive integers with

µ1 + µ2 + · · ·+ µk = |P| .

Can we partition the poset P into k chains with sizes µ1, . . ., µk?
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Chain Partitions in Posets

Example (Boolean Lattice of order 3)
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Chains & Posets

Chain Partitions in Posets

The question is too general.

We want to consider a class of posets that is a generalization
of the Boolean Lattices.

To focus on the so-called “Normalized Matching” or LYM
posets.
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Chain Partitions of Normalized Matching Posets

Chains & Posets

rank & rank numbers in graded posets

Definition

P is a graded poset of rank n if all maximal chains in P have
length n.
If P graded, then rank of x ∈ P is the length of any maximal chain
from a minimal element of P to x .
In a graded poset, each element has a well-defined rank, and the
poset is partitioned into levels with each level consisting of
elements of the same rank.
The set of elements of rank k in a graded poset P = the k-th level
of P.
The size of the k-th level of P = the kth rank number of P.
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Chain Partitions of Normalized Matching Posets

Normalized Matching Posets

Matchings and Marriage

Definition

Let G = (X ,E ,Y ) be a bipartite graph with X ∪ Y = the set of
vertices and E = the set of edges.

For Z ⊆ X , define Γ(Z ) = the
set of neighbors of X in Y . i.e.,

Γ(Z ) = {y ∈ Y | ∃ z ∈ Z such that (z , y) ∈ E}.

Theorem (Marriage Theorem)

Let G = (X ,E ,Y ) be a bipartite graph, with |X | ≤ |Y |. A
necessary and sufficient condition for the existence of a matching
from X to Y is:

|Γ(Z )| ≥ |Z | , ∀ Z ⊆ X .
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Normalized Matching Posets

The normalized matching condition

Question

Given a bipartite graph with parts X and Y , what is the maximum
possible constant α such that

|Γ(Z )| ≥ α |Z | , ∀ Z ⊆ X .

The inequality should work for Z = X . Assuming no isolated
points, we have Γ(X ) = Y , and so:

|Y | ≥ α |X | ⇒ α ≤ |Y | / |X | .

Thus the best we can hope for is:

|Γ(Z )|
|Y |

≥ |Z |
|X |

∀Z ⊆ X .
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Normalized Matching Posets

Definition

Definition (Graham & Harper 1969)

P a finite graded poset of rank n.

P is normalized matching
(NM) (or has the LYM property) if, for any consecutive levels X
and Y in P and Z ⊆ X , we have

|Z |
|X |

≤ |Γ(Z )|
|Y |

,

where Γ(Z ) is the set of neighbors of Z in Y .

Notation

r0, r1, . . ., rn positive integers.Then NM(r0, . . . , rn) denotes the
set of normalized matching posets with rank #s r0, . . ., rn.
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Normalized Matching Posets

Relation to matching

Remark

Let P ∈ NM(r0, r1).

If r0 = r1, then P is NM iff there is a perfect matching
between level 0 and level 1 of P.

If r0 < r1, then P NM is more than the existence of a
matching from level 0 into level 1:
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Not normalized Matching
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Normalized Matching Posets

Workers and Tasks Metaphor

Reformulation
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2 1 1 2

Normalized Matching

Assign each worker 3 (not nec. distinct) tasks such that each task
is assigned 2 (not nec. distinct) workers.

P is NM iff you can make such an assignment for each two
consecutive levels.
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Normalized Matching Posets

Examples

Theorem

Any regular poset (a poset where all the elements at a given level
have the same up-degree, and all the elements at the same level
have the same down-degree) is a normalized matching poset.

Corollary

The Subset Lattices, the Subspace Lattices, and the Divisor
Lattices are all normalized matching posets.
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Normalized Matching Posets

anti-chains and k-families

Definition

P a poset

An anti-chain in P is a set of pairwise incomparable elements.
The width of P is the size of the largest anti-chain in P.
A k-family in P is a subset of P that contains no chains of length
k.

1-family = anti-chain.

In a graded poset, the union of any k levels is a k-family.

[Dilworth’s Theorem] The width of P is the minimum
number of chains needed to cover P.
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Normalized Matching Posets

Equivalent Formulations

Theorem (Kleitman)

P a graded poset with rank numbers r0, . . ., rn.

The Following Are
Equivalent:

P ∈ NM(r0, . . . , rn).

For any anti-chain (a set of pair-wise incomparable elements)
A ⊆ P, let ai = number of elements of A of rank i . Then

n∑
i=0

ai

ri
≤ 1 LYM inequality

P has a regular chain cover, i.e., can find a number of (not
necessarily disjoint) maximal chains that cover P and all the
elements in the same level are on the same number of chains.
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Nested Chain Decomposition

Definition

Definition (Gansner 1982)

P a finite graded poset. A nested chain decomposition or
nesting of P is a partition of P into chains such that for any two
chains in the partition, the ranks of elements of one of the chains
is a subset of the ranks of the elements of the other.

P is nested if it has a nesting.
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Nested Chain Decomposition

The NCD partition of |P|

A nested chain decomposition

may or may not exist.

may or may not be unique.

However, if a nested chain decomposition exists, then the number
of chains and the sizes of the chains in such a chain partition are
unique, and only depend on the rank numbers of the poset.

Definition

P a finite graded poset of rank n.
σ the partition of the integer |P| given by the sizes of the
hypothetical nested chain decomposition of P.
σ is called the NCD partition of |P|.
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The NCD partition for any poset with rank numbers 1, 4, 3, 2 is

4, 3, 2, 1.
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Chain Partitions of Normalized Matching Posets

Majorization or Dominance

Definition

µ = (µi ) and ν = (νi ) two partitions of a positive integer m.
Then µ ≤ ν in the dominance (or majorization) order if and only
if, for all j ,

j∑
i=1

µi ≤
j∑

i=1

νi .

Example

5, 5, 4, 3, 3, 3, 3, 2, 2, 2 < 6, 4, 4, 4, 4, 2, 2, 2, 2, 2

4, 3, 1, 1 and 5, 1, 1, 1, 1 are incomparable.
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4, 3, 1, 1 and 5, 1, 1, 1, 1 are incomparable.
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Generalized Griggs Conjecture (SS)

P be a finite normalized matching poset,
σ the NCD partition of |P|,
µ = (µ1, . . . , µm) an arbitrary partition of |P|.
A partition of the poset P into m chains with sizes µ1, . . . , µm

exists if and only if µ ≤ σ in the dominance order.

The only if direction is straightforward.
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Chain Partitions of Normalized Matching Posets

Generalized Griggs Conjecture

The Füredi Partition

The top partition is the NCD partition, the bottom partition is
always 1|P|.

The number of chains in the NCD partition is the minimum
number needed for a partition of P(size of the largest anti-chain of
P = the width of P).

Definition

Among the partitions dominated by NCD, the minimal partition
with the minimum number of chains is called the Füredi partition.

The Füredi partition consists of only two chain sizes (two
consecutive integers). It is an attempt to partition P into as few
chains as possible and with uniform size.
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Chain Partitions of Normalized Matching Posets

Special Cases: Griggs Nesting Conjecture, Füredi’s Conjecture, Griggs Dominance Conjecture

Special cases of the Generalized Griggs Conjecture are:

Conjecture (Griggs’ Nesting Conjecture 1975)

Every finite normalized matching poset is nested.

Conjecture (Füredi’s Question 1985)

The Boolean lattices can be partitioned into chains according to
the Füredi partition.

Conjecture (Sands 1985 for c = 4, Griggs 1988 for general c)

Fix c ≥ 1. For n sufficiently large, the Boolean Lattices can be
partitioned into chains of length c, except for at most c − 1
elements, which also belong to a single chain.

Conjecture (Griggs’ Dominance Conjecture 1988)

The generalized Griggs conjecture is true for the Boolean Lattices.
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the Füredi partition.

Conjecture (Sands 1985 for c = 4, Griggs 1988 for general c)

Fix c ≥ 1. For n sufficiently large, the Boolean Lattices can be
partitioned into chains of length c, except for at most c − 1
elements, which also belong to a single chain.

Conjecture (Griggs’ Dominance Conjecture 1988)

The generalized Griggs conjecture is true for the Boolean Lattices.



Chain Partitions of Normalized Matching Posets
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Chain Partitions of Normalized Matching Posets

Special Cases: Griggs Nesting Conjecture, Füredi’s Conjecture, Griggs Dominance Conjecture

34 year old Griggs Nesting Conjecture open even for rank 3
posets.

Füredi’s Question is open for the Boolean Lattices.

Griggs Dominance conjecture is open for the Boolean
Lattices.
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Chain Partitions of Normalized Matching Posets

Special Cases: Griggs Nesting Conjecture, Füredi’s Conjecture, Griggs Dominance Conjecture

On Sands and Griggs Conjecture

On Sands and Griggs’ Conjecture:

Problem (Sands, 1985)

Can 2[n] be partitioned into chains of size 4 for sufficiently large n?
Given k, can 2[n] be partitioned into chains of size 2k , for n large
enough?

For k = 0, 1, the problem is easy. For k = 1, just take the chains
X ,X ∪ {n} for all X ⊆ [n − 1].

Theorem (Griggs, Grinstead, Yeh, 1987)

2[n] can be partitioned into chains of size 4 if and only if n ≥ 9.
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On Sands and Griggs Conjecture

Conjecture (Griggs’ c-conjecture 1988)

Fix c ≥ 1. For n sufficiently large, 2[n] can be partitioned into
chains of length c, except for at most c − 1 elements, which also
belong to a single chain.

Theorem (Lonc 1991)

The Griggs’ c-conjecture is true.

For a given c , Lonc’s proof needs n to be very large. Elzobi &
Lonc: for n sufficiently large, 2[n] can be partitioned into chains of
size c = b1

6

√
log log nc, except possibly c − 1 elements which also

form a chain.
According to the Griggs’ dominating conjecture, we should be able
to partition 2[n] as above for c an appropriate constant multiple of√

n.
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On Füredi’s Question

On Füredi’s Question:

In the (hypothetical) Füredi partition of 2[n], the number of chains
is

( n
bn/2c

)
, and the sizes of the chains are a(n) and a(n) + 1, where

a(n) = b2n/
( n
b n

2
c
)
c ∼

√
π/2

√
n.

Theorem (Hsu, Logan, SS., Towse 02 & 03)

2[n] has a partition into
( n
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Special Cases: Griggs Nesting Conjecture, Füredi’s Conjecture, Griggs Dominance Conjecture

On Füredi’s Question

Theorem (Hsu, Logan, S. 06—DM’s IPM Special Issue)

Let P be a rank-unimodal, rank-symmetric normalized matching
poset.

The Generalized Füredi conjecture is true if

P is of rank 2, or

P has rapidly decreasing rank numbers, i.e., if the ratio
between consecutive rank sizes is at least 2 when they are not
both equal to the maximum possible rank size.

Corollary (Hsu, Logan, SS 06—DM’s IPM Special Issue)

Let P be the poset of subspaces of a finite dimensional vector
space over a finite field ordered by inclusion. Then there exists a
partition of P into chains whose sizes are given by the Füredi
partition.
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Generalized Griggs Conjecture

The full generalized Griggs Conjecture is known only for two cases:

Theorem (Lonc, Elzobi 99)

The generalized Griggs Conjecture is true for the product of two
chains.

Theorem (Pearsall, SS)

The generalized Griggs Conjecture is true for all normalized
matching posets of rank 2.
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Rank-Unimodal and Rank-Symmetric Posets

On Griggs’ Nesting Conjecture:

Definition

Let r0, r1, . . ., rn be a sequence of positive integers.
This sequence is unimodal if there is an index 0 ≤ k ≤ n such that

r0 ≤ r1 ≤ · · · ≤ rk and rk ≥ rk+1 ≥ · · · ≥ rn.

The sequence is symmetric if, for 0 ≤ k ≤ n, rk = rn−k .
P a graded poset with rank numbers r0, . . ., rn.
If r0, . . . , rn is unimodal then P is called rank-unimodal.
If r0, . . . , rn is symmetric then P is called rank-symmetric.

Remark

P rank-unimodal, rank-symmetric finite graded poset.
Then a Nested Chain Decomposition for P is called a Symmetric
Chain Decomposition.
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Let r0, r1, . . ., rn be a symmetric and unimodal sequence of
positive integers.

Then every P ∈ NM(r0, . . . , rn) is nested.
i.e., every rank-unimodal, rank-symmetric, normalized matching
poset has a symmetric chain decomposition.
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Griggs’ Nesting Conjecture

k-saturated partitions

Definition

If a partition of a poset P into chains has the following property:

Choose K a maximum size k-family. Then every element in P\K is
in a chain that intersects K in exactly k elements.
Then this partition is called a k-saturated partition of P.

Theorem

1 If P is NM of rank n, then P is nested if and only if P has a
chain partition that is k-saturated for all k with 1 ≤ k ≤ n.

2 [Greene & Kleitman 1976] For every positive integer k, every
poset P has a chain partition that is simultaneously k and
k + 1 saturated.

Corollary

Every rank 2 normalized matching poset is nested.
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Griggs’ Nesting Conjecture—rank 3 posets

Standard case

On Griggs’ Nesting Conjecture for rank 3 posets:

Standard case

To prove Griggs Nesting conjecture for rank 3 posets it is enough
to prove that every P ∈ NM(r0, r1, r2, r3) is nested where r0, r1,
r2, and r3 are arbitrary positive integers with

r0 = r3 < r1 ≤ r2.
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Griggs’ Nesting Conjecture—rank 3 posets

NM(5, 16, r, 5)

Consider P ∈ NM(5, 16, r , 5) with r ≥ 16.

s s s s ss s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s s s s ss s s s s
. . .

5

16

r

5

A nested chain decomposition of P would consist of five chains of
size 4, 11 chains of size 2, and r − 16 singletons. How hard can it
be?



Chain Partitions of Normalized Matching Posets

Griggs’ Nesting Conjecture—rank 3 posets

NM(5, 16, r, 5)

Consider P ∈ NM(5, 16, r , 5) with r ≥ 16.

s s s s ss s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s s s s ss s s s s
. . .

5

16

r

5

A nested chain decomposition of P would consist of five chains of
size 4, 11 chains of size 2, and r − 16 singletons. How hard can it
be?



Chain Partitions of Normalized Matching Posets

Griggs’ Nesting Conjecture—rank 3 posets

NM(5, 16, r, 5)

Consider P ∈ NM(5, 16, r , 5) with r ≥ 16.

s s s s ss s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s s s s ss s s s s
. . .

5

16

r

5

A nested chain decomposition of P would consist of five chains of
size 4, 11 chains of size 2, and r − 16 singletons.

How hard can it
be?



Chain Partitions of Normalized Matching Posets

Griggs’ Nesting Conjecture—rank 3 posets

NM(5, 16, r, 5)

Consider P ∈ NM(5, 16, r , 5) with r ≥ 16.

s s s s ss s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s s s s ss s s s s
. . .

5

16

r

5

A nested chain decomposition of P would consist of five chains of
size 4, 11 chains of size 2, and r − 16 singletons. How hard can it
be?



Chain Partitions of Normalized Matching Posets

Griggs’ Nesting Conjecture—rank 3 posets

Anderson-Griggs Theorem

Before our work the only case (from among NM(5, 16, r , 5)) done
was the case r = 16.

Theorem (Anderson 1967, Griggs 1977)

Every rank-unimodal, rank-symmetric, normalized matching poset
has a symmetric chain decomposition.

Idea of Proof.
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Chain Partitions of Normalized Matching Posets

Griggs’ Nesting Conjecture—rank 3 posets

Growing chains from the middle

Question

When can we use the Anderson-Griggs strategy

and extend any
matching of the middle two levels to a nesting?

For NM(5, 16, r , 5), we showed that we can do so also for
r = 17, 18, and 19.

Theorem (Hsu, Logan, SS 08—DM’s 2nd IPM Special Issue)

Let r0 = r3 < r1 < r2 be positive integers. Then the following are
equivalent.

1 For any P ∈ NM(r0, r1, r2, r3), any matching of level 1 into
level 2 can be extended to a nesting of P.

2

r2 − r1 ≤ d r2
r0
e − 1.
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Growing good chains from the middle

For NM(5, 16, r , 5), the above nesting method does not work for
r ≥ 20.

But for r = 20 and 21, we have an alternative.

Start with a partition of the poset that is simultaneously 1 and
2-saturated(guaranteed by Greene and Kleitman).

We have shown that for r = 20 and 21, the matching between the
middle two levels, given by this partition, can be extended outward
to get a nesting!
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Growing good chains from the middle

Theorem (Escamilla, Nicolae, Salerno, SS, Tirrell, 09+)

Let r0 = r3 < r1 < r2 be positive integers.
For 0 ≤ i ≤ r1 − r0 − 1, define

f (i) =

⌈
r0(1 + i)

r2 − r0

⌉
−

⌊
r0i

r1 − r0

⌋
.

Let i0 be the largest integer (with 0 ≤ i0 ≤ r1 − r0 − 1) such that
f (i0) 6= 0.
If f (i0) > 0, then every P ∈ NM(r0, r1, r2, r3) is nested.

Corollary (Escamilla, Nicolae, Salerno, SS, Tirrell, 09+)

Let r0 = r3 < r1 < r2 ≤ 11 be positive integers. Then every
P ∈ NM(r0, r1, r2, r3) is nested.
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Griggs’ Nesting Conjecture—rank 3 posets

Starting with long chains

Question

For an arbitrary poset P ∈ NM(5, 16, r , 5), can we start with an
arbitrary set of 5 long chains from level 0 to level 3,

and then find
additional 11 chains from level 1 to level 2 to get a nesting?

We showed that for r ≥ 91, the answer is yes.

Theorem (Hsu, Logan, SS 08—DM’s 2nd IPM Special Issue)

Let r0 = r3 < r1 < r2 be positive integers. Then the following are
equivalent.

1 For any P ∈ NM(r0, r1, r2, r3), every collection of r0 chains
of size 4 from level 0 to level 3 can be completed to a nesting.

2

r0r1 < r2.
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Starting with good long chains

We have improved this last result that starting with a particularly
good set of long chains allows you to find a nesting for r ≥ 74.

Theorem (Escamilla, Nicolae, Salerno, SS, Tirrell, 09+)

Let r0 = r3 < r1 < r2 be positive integers. Assume
r2 > r0r1 − r0 gcd(r1, r2), Then every P ∈ NM(r0, r1, r2, r3) is
nested.
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Starting with good long chains

So, for P ∈ NM(5, 16, r , 5), we are guaranteed a nesting if r ≤ 21
or r ≥ 74.

What about any other cases?
We can also produce nestings for r = 32, 48, 64, and 72! In fact,

Theorem

Let r0 = r3 < r1 < r2 be positive integers. Assume one of the
following holds

1 [Hsu, Logan, SS 08] r1 | r2,
2 [Escamilla, Nicolae, Salerno, SS, Tirrell, 09+] r0 | r1,
3 [Escamilla, Nicolae, Salerno, SS, Tirrell, 09+] (r0 + 1) | r1,

Then every P ∈ NM(r0, r1, r2, r3) is nested.
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Let r0 = r3 < r1 < r2 be positive integers. Assume one of the
following holds
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If r1 = 15, then P is nested for all r2 ≥ 15.
If r1 = 16, then P is nested if

16 ≤ r2 ≤ 21, r2 = 32, 48, 64, 72, or r2 ≥ 74.

If r1 = 17, then P is nested if

17 ≤ r2 ≤ 23, r2 = 34, 51, 68, or r2 ≥ 81.

If r1 = 18, then P is nested for all r2 ≥ 18.
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Some of the results can be used for posets of larger rank.

For example, we can prove that

P ∈ NM(3, 5, 8, 32, 29, 10, 9, 5, 2) ⇒ P is nested.
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