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‘Highly symmetric maps on surfaces’ – graph embeddings with ‘large’
automorphism groups. The ‘most symmetric’ maps are regular maps,
which are generalizations of Platonic maps to surfaces of higher genus.
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Introduction

Basic concepts

Surface: Compact (except for the plane), connected 2-manifold.
Orientable: genus g ≥ 0. Nonorientable: genus h ≥ 1.
Euler characteristic: χ = 2− 2g or χ = 2− h.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with ‘corners’ a vertex, the midpoint of an
incident edge, and the centre of a face incident to the vertex and the edge.

Map automorphism: A permutation of flags, preserving incidence.

The automorphism group of a map acts freely on flags.

Regular map: For any ordered pair of flags there is exactly one map
automorphism taking the first flag onto the second.
(transitive and free action = regular action)
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Introduction

Example of a non-spherical regular map

The Petersen Graph on the projective plane, with its dual – K6:

Map elements:
vertices, edges,
regions, flags

Automorphisms:
• 10 visible
• 60 in total
regular on flags
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Introduction

Presentation of automorphism groups of regular maps

Regular map of type {m, k} – a zoom-in:

Aut(M) = 〈x , y , z | x2 = y2 = z2 = (yz)k = (zx)m = (xy)2 = . . . = 1〉

Letting r = yz and s = zx and considering orientable surfaces:

Orientably regular maps: Auto(M) = 〈r , s| rk = sm = (rs)2 = . . . = 1〉
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Introduction

Regular maps in mathematics

Up to isomorphism and duality, 1-1 correspondence between:

regular maps of type {m, k} with k ≥ m

groups 〈x , y , z | x2 = y2 = z2 = (yz)k = (zx)m = (xy)2 = . . . = 1〉
torsion-free normal subgroups of full triangle groups
T (k,m, 2) = 〈x , y , z | x2 = y2 = z2 = (yz)k = (zx)m = (xy)2 = 1〉
images M of smooth coverings U(m, k)→ M of M by a tessellation
of the complex upper half-plane U by congruent m-gons, k of which
meet at each vertex.

In the orientably regular case we have similar one-to-one correspondences,
this time with respect to oriented triangle groups

T o(k ,m, 2) = 〈r , s| rk = sm = (rs)2 = 1〉.
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Introduction

Regular maps in mathematics (continued)

Regular maps, Riemann surfaces, and Galois theory:

Riemann surfaces are two-dimensionaal representations of equations in
complex variables of the form F (x , y) = 0. Very roughly speaking, the
surface is obtained by ‘trying’ to express y as a function of x .

A substantial result of Weil 1950 – Belyj 1972:

A compact Riemann surface F is ‘definable’ via a complex polynomial
equation F (x , y) = 0 with algebraic coefficients if and only if F can be
obtained as a quotient space F = U/H for some subgroup H of an
oriented triangle group T o(k,m, 2).

The second part says, very roughly, that F ‘comes from a map’.

The absolute Galois group can be studied
via its action on (orientably regular) maps. [Grothendieck 1981]
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Introduction

Further motivation

Classification of regular maps on a given surface would therefore have
consequences in numerous branches of mathematics.

One more piece of motivation:

By a celebrated theorem of Hurwitz, for any g ≥ 2 the order of a finite
group acting as a group of conformal automorphisms of the Riemann
surface of genus g is bounded above by 84(g − 1).

A classical problem here is classification of the largest possible group of
automorphisms for any given orientable genus g ≥ 2. Accola showed that
this problem reduces to a large extent, for infinitely many genera, to
classification of all regular maps on a surface of given genus.
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Regular maps on a given surface

Regular maps on surfaces of low genus

Sphere: Platonic maps (and ∞ of trivial maps)
Projective plane: Petersen, K4, duals (and ∞ of trivial maps)
Torus: Infinitely many nontrivial regular maps
Klein bottle: No regular map!

Hurwitz Theorem - A consequence:
A surface with χ < 0 supports just a finite number of regular maps.

orientable (nonorientable) surfaces up to genus 7 (8) – Brahana
(1922), Sherk (1959), Grek (1963,66), Garbe (1969,78), Coxeter
and Moser (1984), Scherwa (1985), Bergau and Garbe (1978,89)

computer-aided extension up to orientable genus 15 and
nonorientable genus 30 – Conder and Dobcsányi (2001); extended
by Conder up to orientable genus 100 and nonorientable genus 200;

by 2005, classification was available only for a finite number of
surfaces.
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Regular maps on a given surface

Breakthrough in the classification problem

Let ν(p) be the number of pairs (j , l) such that j and l are
odd, coprime, j > l ≥ 3, and (j − 1)(l − 1) = p + 1.

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005]

Let p > 13 be a prime and let n(p) be the number of regular maps with
χ = −p, up to isomorphism and duality. Then, n(p) is equal to

0 if p ≡ 1 (mod 12)
1 if p ≡ 5 (mod 12)

ν(p) if p ≡ −5 (mod 12)
ν(p) + 1 if p ≡ −1 (mod 12).

Unlike the orientable case, we have gaps in the genus spectrum for
nonorientable regular maps.

Belolipetsky and Jones (2005): Classification of orientably regular maps of
genus p + 1 with ‘large’ automorphism groups (of order > 6(g − 1)).
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Regular maps on a given surface

Classification: Two basic cases and the Big Hammer

Let G be the automorphism groups of a regular map of type {m, k}
and of Euler characteristic χ. Euler’s formula gives:

|G |(km − 2k − 2m) = 4km(−χ)

Two extreme cases: • χ divides |G | and • (χ, |G |) = 1.

Oddness of −χ implies that Sylow 2-subgroups of G are dihedral.

This enables one to use the powerful result of Gorenstein and Walter
regarding O(G ), the maximal odd-order normal subgroup of G :

If G has dihedral Sylow 2-subgroups, then G/O(G ) is isomorphic to

(a) a Sylow 2-subgroup of G, or

(b) the alternating group A7, or

(c) a subgroup of Aut(PSL(2, q)) containing PSL(2, q), q odd.
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Regular maps on a given surface

Other structural results

Regular maps with almost Sylow-cyclic automorphism groups

(in which all
odd-order Sylow subgroups are cyclic and the even-order ones are dihedral)
have been characterized by Conder, Potočnik and Š (2009).

Orientable basic cases: • g − 1 divides |Auto(M)| and • g − 1 is
coprime to |Auto(M)|. Results of Conder, Š and Tucker (to appear):

Classification of all orientably regular maps M of genus g > 1 such that
g − 1 is a prime dividing |Auto(M)|.

• Three infinite families of chiral maps, that is, orientably regular but not
regular maps (Belolipetsky-Jones)

A major step forward – a classification of all orientably regular maps M of
genus g for which g − 1 and |Auto(M)| are relatively prime.

• Seven infinite families of maps.
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Classification of all orientably regular maps M of genus g > 1 such that
g − 1 is a prime dividing |Auto(M)|.

• Three infinite families of chiral maps, that is, orientably regular but not
regular maps (Belolipetsky-Jones)

A major step forward – a classification of all orientably regular maps M of
genus g for which g − 1 and |Auto(M)| are relatively prime.

• Seven infinite families of maps.

() 13 / 17



Regular maps on a given surface

Other structural results

Regular maps with almost Sylow-cyclic automorphism groups (in which all
odd-order Sylow subgroups are cyclic and the even-order ones are dihedral)
have been characterized by Conder, Potočnik and Š (2009).
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Regular maps on a given surface

Specific corollaries include:

(1) If p is a prime such that p − 1 is not divisible by 3, 5 or 8, then every
orientably regular map of genus g = p + 1 is regular;

(2) If M is a chiral (orientably regular but not regular) map of genus
g = p + 1, where p is prime, and p − 1 is not divisible by 5 or 8, then
either M or its dual has multiple edges;

(3) If M is a regular map of orientable genus g = p + 1, where p is prime
and p > 13, then either M or its dual has multiple edges, and if p ≡ 1
mod 6, then both M and its dual have multiple edges.

Infinitely many gaps in the spectrum of chiral maps and in the spectrum of
regular maps with simple underlying graphs.

Another consequence: A new proof of the classification result of Breda,
Nedela, Š for regular maps on surfaces of genus p + 2 for odd primes p.
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The latest result of Conder, Nedela and Š

Classification for characteristic -3p

Theorem. Up to isomorphism and duality, any regular map with χ = −3p,
p > 53, has one of the following automorphism groups G (r = yz, s = zx):

(a) If p ≡ −8 (mod 21) and p 6≡ −8 (mod 49), then G is a
((p + 8)/3, 8, 2)-group isomorphic to one of the two extensions of
Z(p+8)/21 by PGL(2, 7) of order 16(p + 8); letting n = (p + 8)/21 we have

〈(x , y , z), r7n = s8 = (rs)2 = [x , r7] = xr2s2r7i+1 = 1〉, 7i ≡ −3 (mod n)
〈(x , y , z), r7n = s8 = (rs)2 = [x , r7] = xsr3s3r7i+1 = 1〉, 7i ≡ 2 (mod n).

(b) If p ≡ 1 (mod 4), then G is either one of the (2j , 2l , 2)-groups Gj ,l

〈(x , y , z), r2j = s2l = (rs)2 = (rs−1)2 = 1〉 ∼= Dj × Dl of order 4jl , where
j ≥ l ≥ 3, both j , l are odd, (j , l) ≤ 3, (j − 1)(l − 1) = 3p + 1, and
j ≡ l 6≡ 1 (mod 3), or one of the (6, 2l , 2)-groups Gl with presentation

〈(x , y , z), r6 = s2l = (rs)2 = r2s2r2s−2 = 1〉 ∼= (D3 × Dl).Z3

of order 36l , where l ≡ 2 (mod 4) and 2l − 3 = p.
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Classification for characteristic -3p

Theorem. Up to isomorphism and duality, any regular map with χ = −3p,
p > 53, has one of the following automorphism groups G (r = yz, s = zx):

(a) If p ≡ −8 (mod 21) and p 6≡ −8 (mod 49), then G is a
((p + 8)/3, 8, 2)-group isomorphic to one of the two extensions of
Z(p+8)/21 by PGL(2, 7) of order 16(p + 8); letting n = (p + 8)/21 we have

〈(x , y , z), r7n = s8 = (rs)2 = [x , r7] = xr2s2r7i+1 = 1〉, 7i ≡ −3 (mod n)
〈(x , y , z), r7n = s8 = (rs)2 = [x , r7] = xsr3s3r7i+1 = 1〉, 7i ≡ 2 (mod n).

(b) If p ≡ 1 (mod 4), then G is either one of the (2j , 2l , 2)-groups Gj ,l

〈(x , y , z), r2j = s2l = (rs)2 = (rs−1)2 = 1〉 ∼= Dj × Dl of order 4jl , where
j ≥ l ≥ 3, both j , l are odd, (j , l) ≤ 3, (j − 1)(l − 1) = 3p + 1, and
j ≡ l 6≡ 1 (mod 3), or one of the (6, 2l , 2)-groups Gl with presentation

〈(x , y , z), r6 = s2l = (rs)2 = r2s2r2s−2 = 1〉 ∼= (D3 × Dl).Z3

of order 36l , where l ≡ 2 (mod 4) and 2l − 3 = p.

() 15 / 17



The latest result of Conder, Nedela and Š
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Directions of further research

Directions of future research

Extension of the classification for regular maps on surfaces of Euler
characteristic equal to small negative multiples of a prime?

How about −χ = pp′ with primes p > p′ > 3? Advantage if ‘gap’ at
characteristic −p′... but the number of GW ‘survivors’ increases.

Prime powers? Conder, Potočnik and Š:

Up to isomorphism and duality, the complete list of automorphism groups
of regular maps with χ = −p2, p an odd prime, is:

p = 3, G ∼= 〈(x , y , z), r6 = s6 = sr2s2y = 1〉, |G | = 108

p = 3, G ∼= 〈(x , y , z), r6 = s4 = (rs−1)3x = 1〉, |G | = 216

p = 7, G ∼= PSL(2, 13), |G | = 1092, with presentation

〈(x , y , z), r13 = s3 = rs−1r2s−1r2sr−1sr−1z = r−5s−1r5sr−4sy = 1〉
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MANY THANKS TO THE ORGANIZERS OF THIS NICE MEETING!
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