1 / 17

Regular maps on a given surface – a survey

Jozef Širáň

Open University and Slovak University of Technology

Joint work with M. Conder, R. Nedela and T. Tucker

2 / 17

 \mathbf{C}

'Highly symmetric maps on surfaces' -

'Highly symmetric maps on surfaces' – graph embeddings with 'large' automorphism groups.

'Highly symmetric maps on surfaces' – graph embeddings with 'large' automorphism groups. The 'most symmetric' maps are regular maps, which are generalizations of Platonic maps to surfaces of higher genus.

3 / 17

'Highly symmetric maps on surfaces' – graph embeddings with 'large' automorphism groups. The 'most symmetric' maps are regular maps, which are generalizations of Platonic maps to surfaces of higher genus.

3 / 17

Surface: Compact (except for the plane), connected 2-manifold.

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$.

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

4 / 17

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map:

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag:

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex,

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex, the midpoint of an incident edge,

0

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex, the midpoint of an incident edge, and the centre of a face incident to the vertex and the edge.

()

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex, the midpoint of an incident edge, and the centre of a face incident to the vertex and the edge.

Map automorphism:

4 / 17

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex, the midpoint of an incident edge, and the centre of a face incident to the vertex and the edge.

Map automorphism: A permutation of flags, preserving incidence.

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex, the midpoint of an incident edge, and the centre of a face incident to the vertex and the edge.

Map automorphism: A permutation of flags, preserving incidence.

The automorphism group of a map acts freely on flags.

4 / 17

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex, the midpoint of an incident edge, and the centre of a face incident to the vertex and the edge.

Map automorphism: A permutation of flags, preserving incidence.

The automorphism group of a map acts freely on flags.

Regular map:

4 / 17

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex, the midpoint of an incident edge, and the centre of a face incident to the vertex and the edge.

Map automorphism: A permutation of flags, preserving incidence.

The automorphism group of a map acts freely on flags.

Regular map: For any ordered pair of flags there is exactly one map automorphism taking the first flag onto the second.

()

Surface: Compact (except for the plane), connected 2-manifold.

Orientable: genus $g \ge 0$. Nonorientable: genus $h \ge 1$.

Euler characteristic: $\chi = 2 - 2g$ or $\chi = 2 - h$.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with 'corners' a vertex, the midpoint of an incident edge, and the centre of a face incident to the vertex and the edge.

Map automorphism: A permutation of flags, preserving incidence.

The automorphism group of a map acts freely on flags.

Regular map: For any ordered pair of flags there is exactly one map automorphism taking the first flag onto the second. (transitive and free action = regular action)

900 E 4E+4E+4G+

The Petersen Graph on the projective plane, with its dual – K_6 :

The Petersen Graph on the projective plane, with its dual – K_6 :

The Petersen Graph on the projective plane, with its dual $-K_6$:

Map elements:

The Petersen Graph on the projective plane, with its dual $-K_6$:

Map elements: vertices,

The Petersen Graph on the projective plane, with its dual – K_6 :

Map elements: vertices, edges,

The Petersen Graph on the projective plane, with its dual $-K_6$:

Map elements: vertices, edges, regions,

The Petersen Graph on the projective plane, with its dual – K_6 :

Map elements: vertices, edges, regions, flags

The Petersen Graph on the projective plane, with its dual – K_6 :

Map elements: vertices, edges, regions, flags

Automorphisms:

The Petersen Graph on the projective plane, with its dual – K_6 :

Map elements: vertices, edges, regions, flags

Automorphisms:

• 10 visible

The Petersen Graph on the projective plane, with its dual $-K_6$:

Map elements: vertices, edges, regions, flags

Automorphisms:

- 10 visible
- 60 in total

The Petersen Graph on the projective plane, with its dual $-K_6$:

Map elements: vertices, edges, regions, flags

Automorphisms:

- 10 visible
- 60 in total regular on flags

6 / 17

Regular map of type $\{m, k\}$ – a zoom-in:

Regular map of type $\{m, k\}$ – a zoom-in:

Regular map of type $\{m, k\}$ – a zoom-in:

$$Aut(M) = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \dots = 1 \rangle$$

Regular map of type $\{m, k\}$ – a zoom-in:

$$Aut(M) = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \dots = 1 \rangle$$

Letting r = yz and s = zx and considering orientable surfaces:

(ロ) (個) (量) (量) (量) のQ()

Regular map of type $\{m, k\}$ – a zoom-in:

$$Aut(M) = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \dots = 1 \rangle$$

Letting r = yz and s = zx and considering orientable surfaces:

Orientably regular maps:
$$Aut^o(M) = \langle r, s | r^k = s^m = (rs)^2 = \ldots = 1 \rangle$$

(ロ) (部) (き) (き) き の(の)

Up to isomorphism and duality, 1-1 correspondence between:

Up to isomorphism and duality, 1-1 correspondence between:

• regular maps of type $\{m, k\}$ with $k \ge m$

Up to isomorphism and duality, 1-1 correspondence between:

- regular maps of type $\{m, k\}$ with $k \ge m$
- groups $\langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \dots = 1 \rangle$

Up to isomorphism and duality, 1-1 correspondence between:

- regular maps of type $\{m, k\}$ with $k \ge m$
- groups $\langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \dots = 1 \rangle$
- torsion-free normal subgroups of full triangle groups $T(k, m, 2) = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = 1 \rangle$

Up to isomorphism and duality, 1-1 correspondence between:

- regular maps of type $\{m, k\}$ with $k \ge m$
- groups $\langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \dots = 1 \rangle$
- torsion-free normal subgroups of full triangle groups $T(k, m, 2) = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = 1 \rangle$
- images M of smooth coverings $\mathcal{U}(m,k) \to M$ of M by a tessellation of the complex upper half-plane \mathcal{U} by congruent m-gons, k of which meet at each vertex

()

Up to isomorphism and duality, 1-1 correspondence between:

- regular maps of type $\{m, k\}$ with $k \ge m$
- groups $\langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \dots = 1 \rangle$
- torsion-free normal subgroups of full triangle groups $T(k, m, 2) = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = 1 \rangle$
- images M of smooth coverings $\mathcal{U}(m,k) \to M$ of M by a tessellation of the complex upper half-plane \mathcal{U} by congruent m-gons, k of which meet at each vertex

In the orientably regular case we have similar one-to-one correspondences, this time with respect to *oriented triangle groups*

$$T^{o}(k, m, 2) = \langle r, s | r^{k} = s^{m} = (rs)^{2} = 1 \rangle.$$

()

Regular maps, Riemann surfaces, and Galois theory:

Regular maps, Riemann surfaces, and Galois theory:

Riemann surfaces are two-dimensionaal representations of equations in complex variables of the form F(x, y) = 0.

Regular maps, Riemann surfaces, and Galois theory:

Riemann surfaces are two-dimensionaal representations of equations in complex variables of the form F(x, y) = 0. Very roughly speaking, the surface is obtained by 'trying' to express y as a function of x.

8 / 17

Regular maps, Riemann surfaces, and Galois theory:

Riemann surfaces are two-dimensionaal representations of equations in complex variables of the form F(x, y) = 0. Very roughly speaking, the surface is obtained by 'trying' to express y as a function of x.

A substantial result of Weil 1950 – Belyj 1972:

Regular maps, Riemann surfaces, and Galois theory:

Riemann surfaces are two-dimensionaal representations of equations in complex variables of the form F(x, y) = 0. Very roughly speaking, the surface is obtained by 'trying' to express y as a function of x.

A substantial result of Weil 1950 – Belyj 1972:

A compact Riemann surface \mathcal{F} is 'definable' via a complex polynomial equation F(x,y)=0 with algebraic coefficients if and only if \mathcal{F} can be obtained as a quotient space $\mathcal{F}=\mathcal{U}/H$ for some subgroup H of an oriented triangle group $T^{\circ}(k,m,2)$.

Regular maps, Riemann surfaces, and Galois theory:

Riemann surfaces are two-dimensionaal representations of equations in complex variables of the form F(x, y) = 0. Very roughly speaking, the surface is obtained by 'trying' to express y as a function of x.

A substantial result of Weil 1950 - Belyj 1972:

A compact Riemann surface \mathcal{F} is 'definable' via a complex polynomial equation F(x,y)=0 with algebraic coefficients if and only if \mathcal{F} can be obtained as a quotient space $\mathcal{F}=\mathcal{U}/H$ for some subgroup H of an oriented triangle group $T^{\circ}(k,m,2)$.

The second part says, very roughly, that \mathcal{F} 'comes from a map'.

Regular maps, Riemann surfaces, and Galois theory:

Riemann surfaces are two-dimensionaal representations of equations in complex variables of the form F(x, y) = 0. Very roughly speaking, the surface is obtained by 'trying' to express y as a function of x.

A substantial result of Weil 1950 - Belyj 1972:

A compact Riemann surface \mathcal{F} is 'definable' via a complex polynomial equation F(x,y)=0 with algebraic coefficients if and only if \mathcal{F} can be obtained as a quotient space $\mathcal{F}=\mathcal{U}/H$ for some subgroup H of an oriented triangle group $T^{\circ}(k,m,2)$.

The second part says, very roughly, that \mathcal{F} 'comes from a map'.

The absolute Galois group can be studied via its action on (orientably regular) maps. [Grothendieck 1981]

Classification of regular maps on a given surface would therefore have consequences in numerous branches of mathematics.

Classification of regular maps on a given surface would therefore have consequences in numerous branches of mathematics.

One more piece of motivation:

9 / 17

Classification of regular maps on a given surface would therefore have consequences in numerous branches of mathematics.

One more piece of motivation:

By a celebrated theorem of Hurwitz, for any $g \ge 2$ the order of a finite group acting as a group of conformal automorphisms of the Riemann surface of genus g is bounded above by 84(g-1).

Classification of regular maps on a given surface would therefore have consequences in numerous branches of mathematics.

One more piece of motivation:

By a celebrated theorem of Hurwitz, for any $g \ge 2$ the order of a finite group acting as a group of conformal automorphisms of the Riemann surface of genus g is bounded above by 84(g-1).

A classical problem here is classification of the largest possible group of automorphisms for any given orientable genus $g \ge 2$.

 \cdot

Classification of regular maps on a given surface would therefore have consequences in numerous branches of mathematics.

One more piece of motivation:

By a celebrated theorem of Hurwitz, for any $g \ge 2$ the order of a finite group acting as a group of conformal automorphisms of the Riemann surface of genus g is bounded above by 84(g-1).

A classical problem here is classification of the largest possible group of automorphisms for any given orientable genus $g \ge 2$. Accola showed that this problem reduces to a large extent, for infinitely many genera, to

Classification of regular maps on a given surface would therefore have consequences in numerous branches of mathematics.

One more piece of motivation:

By a celebrated theorem of Hurwitz, for any $g \ge 2$ the order of a finite group acting as a group of conformal automorphisms of the Riemann surface of genus g is bounded above by 84(g-1).

A classical problem here is classification of the largest possible group of automorphisms for any given orientable genus $g \ge 2$. Accola showed that this problem reduces to a large extent, for infinitely many genera, to classification of all regular maps on a surface of given genus.

Sphere:

Sphere: Platonic maps (and ∞ of trivial maps)

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane:

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus:

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus: Infinitely many *non*trivial regular maps

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus: Infinitely many *non*trivial regular maps

Klein bottle:

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus: Infinitely many *non*trivial regular maps

Klein bottle: No regular map!

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus: Infinitely many *non*trivial regular maps

Klein bottle: No regular map!

Hurwitz Theorem - A consequence:

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus: Infinitely many *non*trivial regular maps

Klein bottle: No regular map!

Hurwitz Theorem - A consequence:

A surface with χ < 0 supports just a finite number of regular maps.

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus: Infinitely many *non*trivial regular maps

Klein bottle: No regular map!

Hurwitz Theorem - A consequence:

A surface with $\chi < 0$ supports just a finite number of regular maps.

orientable (nonorientable) surfaces up to genus 7 (8) – Brahana (1922), Sherk (1959), Grek (1963,66), Garbe (1969,78), Coxeter and Moser (1984), Scherwa (1985), Bergau and Garbe (1978,89)

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus: Infinitely many *non*trivial regular maps

Klein bottle: No regular map!

Hurwitz Theorem - A consequence:

A surface with $\chi < 0$ supports just a finite number of regular maps.

- orientable (nonorientable) surfaces up to genus 7 (8) Brahana (1922), Sherk (1959), Grek (1963,66), Garbe (1969,78), Coxeter and Moser (1984), Scherwa (1985), Bergau and Garbe (1978,89)
- computer-aided extension up to orientable genus 15 and nonorientable genus 30 – Conder and Dobcsányi (2001); extended by Conder up to orientable genus 100 and nonorientable genus 200;

Sphere: Platonic maps (and ∞ of trivial maps)

Projective plane: Petersen, K_4 , duals (and ∞ of trivial maps)

Torus: Infinitely many *non*trivial regular maps

Klein bottle: No regular map!

Hurwitz Theorem - A consequence:

A surface with χ < 0 supports just a finite number of regular maps.

- orientable (nonorientable) surfaces up to genus 7 (8) Brahana (1922), Sherk (1959), Grek (1963,66), Garbe (1969,78), Coxeter and Moser (1984), Scherwa (1985), Bergau and Garbe (1978,89)
- computer-aided extension up to orientable genus 15 and nonorientable genus 30 – Conder and Dobcsányi (2001); extended by Conder up to orientable genus 100 and nonorientable genus 200;
- by 2005, classification was available only for a finite number of surfaces.

Let $\nu(p)$ be the number of pairs (j, l) such that j and l are odd, coprime, $j > l \ge 3$, and (j-1)(l-1) = p+1.

Let $\nu(p)$ be the number of pairs (j, l) such that j and l are odd, coprime, $j > l \ge 3$, and (j-1)(l-1) = p+1.

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005]

Let $\nu(p)$ be the number of pairs (j, l) such that j and l are odd, coprime, $j > l \ge 3$, and (j-1)(l-1) = p+1.

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005] Let p > 13 be a prime and let n(p) be the number of regular maps with $\chi = -p$, up to isomorphism and duality. Then, n(p) is equal to

Let $\nu(p)$ be the number of pairs (j, l) such that j and l are odd, coprime, $j > l \ge 3$, and (j-1)(l-1) = p+1.

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005] Let p > 13 be a prime and let n(p) be the number of regular maps with $\chi = -p$, up to isomorphism and duality. Then, n(p) is equal to

0 if $p \equiv 1 \pmod{12}$

```
Let \nu(p) be the number of pairs (j, l) such that j and l are odd, coprime, j > l \ge 3, and (j-1)(l-1) = p+1.
```

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005] Let p > 13 be a prime and let n(p) be the number of regular maps with $\chi = -p$, up to isomorphism and duality. Then, n(p) is equal to 0 if $p \equiv 1 \pmod{12}$

```
1 if p \equiv 1 \pmod{12}
1 p \equiv 5 \pmod{12}
```

```
Let \nu(p) be the number of pairs (j, l) such that j and l are odd, coprime, j > l \ge 3, and (j-1)(l-1) = p+1.
```

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005] Let p > 13 be a prime and let n(p) be the number of regular maps with $\chi = -p$, up to isomorphism and duality. Then, n(p) is equal to

```
0 if p \equiv 1 \pmod{12}

1 if p \equiv 5 \pmod{12}

\nu(p) if p \equiv -5 \pmod{12}
```

```
Let \nu(p) be the number of pairs (j, l) such that j and l are odd, coprime, j > l \ge 3, and (j-1)(l-1) = p+1.
```

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005] Let p > 13 be a prime and let n(p) be the number of regular maps with $\chi = -p$, up to isomorphism and duality. Then, n(p) is equal to

```
0 if p \equiv 1 \pmod{12}

1 if p \equiv 5 \pmod{12}

\nu(p) if p \equiv -5 \pmod{12}

\nu(p) + 1 if p \equiv -1 \pmod{12}.
```

Let $\nu(p)$ be the number of pairs (j, l) such that j and l are odd, coprime, $j > l \ge 3$, and (j-1)(l-1) = p+1.

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005] Let p > 13 be a prime and let n(p) be the number of regular maps with $\chi = -p$, up to isomorphism and duality. Then, n(p) is equal to

$$\begin{array}{lll} 0 & \text{if} & p \equiv 1 \pmod{12} \\ 1 & \text{if} & p \equiv 5 \pmod{12} \\ \nu(p) & \text{if} & p \equiv -5 \pmod{12} \\ \nu(p) + 1 & \text{if} & p \equiv -1 \pmod{12}. \end{array}$$

Unlike the orientable case, we have gaps in the genus spectrum for nonorientable regular maps.

Let $\nu(p)$ be the number of pairs (j, l) such that j and l are odd, coprime, $j > l \ge 3$, and (j-1)(l-1) = p+1.

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005] Let p > 13 be a prime and let n(p) be the number of regular maps with $\chi = -p$, up to isomorphism and duality. Then, n(p) is equal to

$$\begin{array}{lll} 0 & \text{if} & p \equiv 1 \pmod{12} \\ 1 & \text{if} & p \equiv 5 \pmod{12} \\ \nu(p) & \text{if} & p \equiv -5 \pmod{12} \\ \nu(p) + 1 & \text{if} & p \equiv -1 \pmod{12}. \end{array}$$

Unlike the orientable case, we have gaps in the genus spectrum for nonorientable regular maps.

Belolipetsky and Jones (2005): Classification of orientably regular maps of genus p+1 with 'large' automorphism groups (of order > 6(g-1)).

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ .

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Two extreme cases:

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Two extreme cases: • χ divides |G|

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Oddness of $-\chi$ implies that Sylow 2-subgroups of G are dihedral.

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Two extreme cases: • χ divides |G| and • $(\chi, |G|) = 1$.

Oddness of $-\chi$ implies that Sylow 2-subgroups of G are dihedral.

This enables one to use the powerful result of Gorenstein and Walter regarding O(G), the maximal odd-order normal subgroup of G:

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Two extreme cases: • χ divides |G| and • $(\chi, |G|) = 1$.

Oddness of $-\chi$ implies that Sylow 2-subgroups of G are dihedral.

This enables one to use the powerful result of Gorenstein and Walter regarding O(G), the maximal odd-order normal subgroup of G:

If G has dihedral Sylow 2-subgroups, then G/O(G) is isomorphic to

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Two extreme cases: • χ divides |G| and • $(\chi, |G|) = 1$.

Oddness of $-\chi$ implies that Sylow 2-subgroups of G are dihedral.

This enables one to use the powerful result of Gorenstein and Walter regarding O(G), the maximal odd-order normal subgroup of G:

If G has dihedral Sylow 2-subgroups, then G/O(G) is isomorphic to (a) a Sylow 2-subgroup of G, or

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Two extreme cases: • χ divides |G| and • $(\chi, |G|) = 1$.

Oddness of $-\chi$ implies that Sylow 2-subgroups of G are dihedral.

This enables one to use the powerful result of Gorenstein and Walter regarding O(G), the maximal odd-order normal subgroup of G:

- If G has dihedral Sylow 2-subgroups, then G/O(G) is isomorphic to
- (a) a Sylow 2-subgroup of G, or
- (b) the alternating group A_7 , or

Let G be the automorphism groups of a regular map of type $\{m, k\}$ and of Euler characteristic χ . Euler's formula gives:

$$|G|(km-2k-2m)=4km(-\chi)$$

Two extreme cases: • χ divides |G| and • $(\chi, |G|) = 1$.

Oddness of $-\chi$ implies that Sylow 2-subgroups of G are dihedral.

This enables one to use the powerful result of Gorenstein and Walter regarding O(G), the maximal odd-order normal subgroup of G:

- If G has dihedral Sylow 2-subgroups, then G/O(G) is isomorphic to
- (a) a Sylow 2-subgroup of G, or
- (b) the alternating group A_7 , or
- (c) a subgroup of Aut(PSL(2,q)) containing PSL(2,q), q odd.

Regular maps with almost Sylow-cyclic automorphism groups

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral)

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

Orientable basic cases:

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

Orientable basic cases: • g-1 divides $|Aut^o(M)|$

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

```
Orientable basic cases: • g-1 divides |\operatorname{Aut}^o(M)| and • g-1 is coprime to |\operatorname{Aut}^o(M)|.
```

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

```
Orientable basic cases: • g-1 divides |\operatorname{Aut}^o(M)| and • g-1 is coprime to |\operatorname{Aut}^o(M)|. Results of Conder, Š and Tucker (to appear):
```

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

```
Orientable basic cases: • g-1 divides |\operatorname{Aut}^o(M)| and • g-1 is coprime to |\operatorname{Aut}^o(M)|. Results of Conder, Š and Tucker (to appear):
```

Classification of all orientably regular maps M of genus g > 1 such that g - 1 is a prime dividing $|\operatorname{Aut}^o(M)|$.

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

```
Orientable basic cases: • g-1 divides |\operatorname{Aut}^o(M)| and • g-1 is coprime to |\operatorname{Aut}^o(M)|. Results of Conder, Š and Tucker (to appear):
```

Classification of all orientably regular maps M of genus g>1 such that g-1 is a prime dividing $|\operatorname{Aut}^o(M)|$.

• Three infinite families of chiral maps, that is, orientably regular but not regular maps (Belolipetsky-Jones)

Other structural results

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

```
Orientable basic cases: • g-1 divides |\operatorname{Aut}^o(M)| and • g-1 is coprime to |\operatorname{Aut}^o(M)|. Results of Conder, Š and Tucker (to appear):
```

Classification of all orientably regular maps M of genus g>1 such that g-1 is a prime dividing $|\operatorname{Aut}^o(M)|$.

• Three infinite families of chiral maps, that is, orientably regular but not regular maps (Belolipetsky-Jones)

A major step forward – a classification of all orientably regular maps M of genus g for which g-1 and $|\operatorname{Aut}^o(M)|$ are relatively prime.

Other structural results

Regular maps with almost Sylow-cyclic automorphism groups (in which all odd-order Sylow subgroups are cyclic and the even-order ones are dihedral) have been characterized by Conder, Potočnik and Š (2009).

```
Orientable basic cases: • g-1 divides |\operatorname{Aut}^o(M)| and • g-1 is coprime to |\operatorname{Aut}^o(M)|. Results of Conder, Š and Tucker (to appear):
```

Classification of all orientably regular maps M of genus g > 1 such that g - 1 is a prime dividing $|\operatorname{Aut}^o(M)|$.

• Three infinite families of chiral maps, that is, orientably regular but not regular maps (Belolipetsky-Jones)

A major step forward – a classification of all orientably regular maps M of genus g for which g-1 and $|\operatorname{Aut}^o(M)|$ are relatively prime.

• Seven infinite families of maps.

(1) If p is a prime such that p-1 is not divisible by 3, 5 or 8, then every orientably regular map of genus g=p+1 is regular;

14 / 17

- (1) If p is a prime such that p-1 is not divisible by 3, 5 or 8, then every orientably regular map of genus g=p+1 is regular;
- (2) If M is a chiral (orientably regular but not regular) map of genus g = p + 1, where p is prime, and p 1 is not divisible by 5 or 8, then either M or its dual has multiple edges;

14 / 17

- (1) If p is a prime such that p-1 is not divisible by 3, 5 or 8, then every orientably regular map of genus g=p+1 is regular;
- (2) If M is a chiral (orientably regular but not regular) map of genus g = p + 1, where p is prime, and p 1 is not divisible by 5 or 8, then either M or its dual has multiple edges;
- (3) If M is a regular map of orientable genus g=p+1, where p is prime and p>13, then either M or its dual has multiple edges, and if $p\equiv 1$ mod 6, then both M and its dual have multiple edges.

- (1) If p is a prime such that p-1 is not divisible by 3, 5 or 8, then every orientably regular map of genus g=p+1 is regular;
- (2) If M is a chiral (orientably regular but not regular) map of genus g = p + 1, where p is prime, and p 1 is not divisible by 5 or 8, then either M or its dual has multiple edges;
- (3) If M is a regular map of orientable genus g=p+1, where p is prime and p>13, then either M or its dual has multiple edges, and if $p\equiv 1 \mod 6$, then both M and its dual have multiple edges.

Infinitely many gaps in the spectrum of chiral maps

14 / 17

- (1) If p is a prime such that p-1 is not divisible by 3, 5 or 8, then every orientably regular map of genus g=p+1 is regular;
- (2) If M is a chiral (orientably regular but not regular) map of genus g = p + 1, where p is prime, and p 1 is not divisible by 5 or 8, then either M or its dual has multiple edges;
- (3) If M is a regular map of orientable genus g=p+1, where p is prime and p>13, then either M or its dual has multiple edges, and if $p\equiv 1$ mod 6, then both M and its dual have multiple edges.

Infinitely many gaps in the spectrum of chiral maps and

- (1) If p is a prime such that p-1 is not divisible by 3, 5 or 8, then every orientably regular map of genus g=p+1 is regular;
- (2) If M is a chiral (orientably regular but not regular) map of genus g = p + 1, where p is prime, and p 1 is not divisible by 5 or 8, then either M or its dual has multiple edges;
- (3) If M is a regular map of orientable genus g=p+1, where p is prime and p>13, then either M or its dual has multiple edges, and if $p\equiv 1$ mod 6, then both M and its dual have multiple edges.

Infinitely many gaps in the spectrum of chiral maps and in the spectrum of regular maps with *simple* underlying graphs.

- (1) If p is a prime such that p-1 is not divisible by 3, 5 or 8, then every orientably regular map of genus g=p+1 is regular;
- (2) If M is a chiral (orientably regular but not regular) map of genus g = p + 1, where p is prime, and p 1 is not divisible by 5 or 8, then either M or its dual has multiple edges;
- (3) If M is a regular map of orientable genus g=p+1, where p is prime and p>13, then either M or its dual has multiple edges, and if $p\equiv 1 \mod 6$, then both M and its dual have multiple edges.

Infinitely many gaps in the spectrum of chiral maps and in the spectrum of regular maps with *simple* underlying graphs.

Another consequence: A new proof of the classification result of Breda, Nedela, \check{S} for regular maps on surfaces of genus p+2 for odd primes p.

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G (r = yz, s = zx):

Theorem. Up to isomorphism and duality, any regular map with $\chi=-3p$, p>53, has one of the following automorphism groups G (r=yz, s=zx):

(a) If
$$p \equiv -8 \pmod{21}$$
 and $p \not\equiv -8 \pmod{49}$,

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G (r = yz, s = zx):

(a) If $p \equiv -8 \pmod{21}$ and $p \not\equiv -8 \pmod{49}$, then G is a ((p+8)/3, 8, 2)-group isomorphic to one of the two extensions of $Z_{(p+8)/21}$ by PGL(2,7) of order 16(p+8);

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G (r = yz, s = zx): (a) If $p \equiv -8 \pmod{21}$ and $p \not\equiv -8 \pmod{49}$, then G is a ((p+8)/3,8,2)-group isomorphic to one of the two extensions of $Z_{(p+8)/21}$ by PGL(2,7) of order 16(p+8); letting n = (p+8)/21 we have $\langle (x,y,z), r^{7n} = s^8 = (rs)^2 = [x,r^7] = xr^2s^2r^{7i+1} = 1 \rangle$, $7i \equiv -3 \pmod{n}$

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G (r = yz, s = zx): (a) If $p \equiv -8 \pmod{21}$ and $p \not\equiv -8 \pmod{49}$, then G is a ((p+8)/3,8,2)-group isomorphic to one of the two extensions of $Z_{(p+8)/21}$ by PGL(2,7) of order 16(p+8); letting n = (p+8)/21 we have $\langle (x,y,z), r^{7n} = s^8 = (rs)^2 = [x,r^7] = xr^2s^2r^{7i+1} = 1 \rangle$, $7i \equiv -3 \pmod{n}$. $\langle (x,y,z), r^{7n} = s^8 = (rs)^2 = [x,r^7] = xsr^3s^3r^{7i+1} = 1 \rangle$, $7i \equiv 2 \pmod{n}$.

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G (r = yz, s = zx):

(a) If
$$p \equiv -8 \pmod{21}$$
 and $p \not\equiv -8 \pmod{49}$, then G is a $((p+8)/3,8,2)$ -group isomorphic to one of the two extensions of $Z_{(p+8)/21}$ by $PGL(2,7)$ of order $16(p+8)$; letting $n=(p+8)/21$ we have $((x,y,z), r^{7n}=s^8=(rs)^2=[x,r^7]=xr^2s^2r^{7i+1}=1\rangle$, $7i \equiv -3 \pmod{n}$. $((x,y,z), r^{7n}=s^8=(rs)^2=[x,r^7]=xsr^3s^3r^{7i+1}=1\rangle$, $7i \equiv 2 \pmod{n}$.

(b) If
$$p \equiv 1 \pmod{4}$$
, then G is either one of the $(2j, 2l, 2)$ -groups $G_{j, l}$

◆ロト ◆問 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 ・ 夕 Q (で)

15 / 17

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G(r = yz, s = zx): (a) If $p \equiv -8 \pmod{21}$ and $p \not\equiv -8 \pmod{49}$, then G is a ((p+8)/3, 8, 2)-group isomorphic to one of the two extensions of $Z_{(p+8)/21}$ by PGL(2,7) of order 16(p+8); letting n = (p+8)/21 we have

$$\langle (x, y, z), r^{7n} = s^8 = (rs)^2 = [x, r^7] = xr^2s^2r^{7i+1} = 1 \rangle, 7i \equiv -3 \pmod{n}$$

 $\langle (x, y, z), r^{7n} = s^8 = (rs)^2 = [x, r^7] = xsr^3s^3r^{7i+1} = 1 \rangle, 7i \equiv 2 \pmod{n}.$

(b) If
$$p \equiv 1 \pmod{4}$$
, then G is either one of the $(2j, 2l, 2)$ -groups $G_{j,l}$

$$\langle (x, y, z), r^{2j} = s^{2l} = (rs)^2 = (rs^{-1})^2 = 1 \rangle \cong D_j \times D_l$$
 of order 4 jl ,

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G(r = yz, s = zx): (a) If $p \equiv -8 \pmod{21}$ and $p \not\equiv -8 \pmod{49}$, then G is a ((p+8)/3, 8, 2)-group isomorphic to one of the two extensions of $Z_{(p+8)/21}$ by PGL(2,7) of order 16(p+8); letting n = (p+8)/21 we have $\langle (x, y, z), r^{7n} = s^8 = (rs)^2 = [x, r^7] = xr^2s^2r^{7i+1} = 1 \rangle, 7i \equiv -3 \pmod{n}$ $\langle (x, y, z), r^{7n} = s^8 = (rs)^2 = [x, r^7] = xsr^3s^3r^{7i+1} = 1 \rangle, 7i \equiv 2 \pmod{n}.$ (b) If $p \equiv 1 \pmod{4}$, then G is either one of the (2j, 2l, 2)-groups $G_{i,l}$ $\langle (x, y, z), r^{2j} = s^{2l} = (rs)^2 = (rs^{-1})^2 = 1 \rangle \cong D_i \times D_l$ of order 4il, where $j \ge l \ge 3$, both j, l are odd, $(j, l) \le 3$, (j - 1)(l - 1) = 3p + 1, and $j \equiv l \not\equiv 1 \pmod{3}$,

15 / 17

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G(r = yz, s = zx): (a) If $p \equiv -8 \pmod{21}$ and $p \not\equiv -8 \pmod{49}$, then G is a ((p+8)/3,8,2)-group isomorphic to one of the two extensions of $Z_{(p+8)/21}$ by PGL(2,7) of order 16(p+8); letting n = (p+8)/21 we have $\langle (x, y, z), r^{7n} = s^8 = (rs)^2 = [x, r^7] = xr^2s^2r^{7i+1} = 1 \rangle, 7i \equiv -3 \pmod{n}$ $\langle (x, y, z), r^{7n} = s^8 = (rs)^2 = [x, r^7] = xsr^3s^3r^{7i+1} = 1 \rangle, 7i \equiv 2 \pmod{n}.$ (b) If $p \equiv 1 \pmod{4}$, then G is either one of the (2j, 2l, 2)-groups $G_{i,l}$ $\langle (x, y, z), r^{2j} = s^{2l} = (rs)^2 = (rs^{-1})^2 = 1 \rangle \cong D_i \times D_l$ of order 4il, where i > l > 3, both j, l are odd, (i, l) < 3, (i - 1)(l - 1) = 3p + 1, and $j \equiv l \not\equiv 1 \pmod{3}$, or one of the (6,2l,2)-groups G_l with presentation $\langle (x, y, z), r^6 = s^{2l} = (rs)^2 = r^2 s^2 r^2 s^{-2} = 1 \rangle \cong (D_3 \times D_l).Z_3$

Theorem. Up to isomorphism and duality, any regular map with $\chi = -3p$, p > 53, has one of the following automorphism groups G(r = yz, s = zx): (a) If $p \equiv -8 \pmod{21}$ and $p \not\equiv -8 \pmod{49}$, then G is a ((p+8)/3,8,2)-group isomorphic to one of the two extensions of $Z_{(p+8)/21}$ by PGL(2,7) of order 16(p+8); letting n=(p+8)/21 we have $\langle (x, y, z), r^{7n} = s^8 = (rs)^2 = [x, r^7] = xr^2s^2r^{7i+1} = 1 \rangle, 7i \equiv -3 \pmod{n}$ $\langle (x, y, z), r^{7n} = s^8 = (rs)^2 = [x, r^7] = xsr^3s^3r^{7i+1} = 1 \rangle, 7i \equiv 2 \pmod{n}.$ (b) If $p \equiv 1 \pmod{4}$, then G is either one of the (2j, 2l, 2)-groups $G_{i,l}$ $\langle (x, y, z), r^{2j} = s^{2l} = (rs)^2 = (rs^{-1})^2 = 1 \rangle \cong D_i \times D_l$ of order 4il, where i > l > 3, both j, l are odd, (i, l) < 3, (i - 1)(l - 1) = 3p + 1, and $j \equiv l \not\equiv 1 \pmod{3}$, or one of the (6, 2l, 2)-groups G_l with presentation $\langle (x, y, z), r^6 = s^{2l} = (rs)^2 = r^2 s^2 r^2 s^{-2} = 1 \rangle \cong (D_3 \times D_l).Z_3$ of order 361, where $l \equiv 2 \pmod{4}$ and 2l - 3 = p.

• Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3?

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3? Advantage if 'gap' at characteristic -p'...

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3? Advantage if 'gap' at characteristic -p'... but the number of GW 'survivors' increases.

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3? Advantage if 'gap' at characteristic -p'... but the number of GW 'survivors' increases.
- Prime powers?

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3? Advantage if 'gap' at characteristic -p'... but the number of GW 'survivors' increases.
- Prime powers? Conder, Potočnik and Š:

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3? Advantage if 'gap' at characteristic -p'... but the number of GW 'survivors' increases.
- Prime powers? Conder, Potočnik and Š:

Up to isomorphism and duality, the complete list of automorphism groups of regular maps with $\chi = -p^2$, p an odd prime, is:

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3? Advantage if 'gap' at characteristic -p'... but the number of GW 'survivors' increases.
- Prime powers? Conder, Potočnik and Š:

Up to isomorphism and duality, the complete list of automorphism groups of regular maps with $\chi = -p^2$, p an odd prime, is:

•
$$p = 3$$
, $G \cong \langle (x, y, z), r^6 = s^6 = sr^2s^2y = 1 \rangle$, $|G| = 108$

16 / 17

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3? Advantage if 'gap' at characteristic -p'... but the number of GW 'survivors' increases.
- Prime powers? Conder, Potočnik and Š:

Up to isomorphism and duality, the complete list of automorphism groups of regular maps with $\chi = -p^2$, p an odd prime, is:

- p = 3, $G \cong \langle (x, y, z), r^6 = s^6 = sr^2s^2y = 1 \rangle$, |G| = 108
- p = 3, $G \cong \langle (x, y, z), r^6 = s^4 = (rs^{-1})^3 x = 1 \rangle$, |G| = 216

- Extension of the classification for regular maps on surfaces of Euler characteristic equal to small negative multiples of a prime?
- How about $-\chi = pp'$ with primes p > p' > 3? Advantage if 'gap' at characteristic -p'... but the number of GW 'survivors' increases.
- Prime powers? Conder, Potočnik and Š:

Up to isomorphism and duality, the complete list of automorphism groups of regular maps with $\chi = -p^2$, p an odd prime, is:

•
$$p = 3$$
, $G \cong \langle (x, y, z), r^6 = s^6 = sr^2s^2y = 1 \rangle$, $|G| = 108$

•
$$p = 3$$
, $G \cong \langle (x, y, z), r^6 = s^4 = (rs^{-1})^3 x = 1 \rangle$, $|G| = 216$

$$ullet$$
 $p=7$, $G\cong \mathrm{PSL}(2,13)$, $|G|=1092$, with presentation

$$\langle (x, y, z), r^{13} = s^3 = rs^{-1}r^2s^{-1}r^2sr^{-1}sr^{-1}z = r^{-5}s^{-1}r^5sr^{-4}sy = 1 \rangle$$

MANY THANKS TO THE ORGANIZERS OF THIS NICE MEETING!