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Surface: Compact (except for the plane), connected 2-manifold.
Orientable: genus g > 0. Nonorientable: genus h > 1.
Euler characteristic: x =2 —2g or x =2 — h.

Map: Cellular embedding of a graph on a surface.

Flag: Topological triangle with ‘corners’ a vertex, the midpoint of an
incident edge, and the centre of a face incident to the vertex and the edge.

Map automorphism: A permutation of flags, preserving incidence.

The automorphism group of a map acts freely on flags.

Regular map: For any ordered pair of flags there is exactly one map
automorphism taking the first flag onto the second.
(transitive and free action = regular action)
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The Petersen Graph on the projective plane, with its dual — Kg:

Map elements:
vertices, edges,
regions, flags

Automorphisms:
e 10 visible

e 60 in total
regular on flags
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@ torsion-free normal subgroups of full triangle groups
T(k,m,2) = (x,y, 2| x* = y* = 2% = (y2)* = (2x)" = ()’ = 1)
@ images M of smooth coverings U(m, k) — M of M by a tessellation

of the complex upper half-plane U by congruent m-gons, k of which
meet at each vertex.
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Up to isomorphism and duality, 1-1 correspondence between:
o regular maps of type {m, k} with k > m
o groups (x,y,z| x> =y? =22 = (y2)k = (z)" = (xy)? = ... = 1)
@ torsion-free normal subgroups of full triangle groups
T(k,m,2) = (x,y, 2| x* = y* = 2% = (y2)* = (2x)" = ()’ = 1)
@ images M of smooth coverings U(m, k) — M of M by a tessellation

of the complex upper half-plane U by congruent m-gons, k of which
meet at each vertex.

In the orientably regular case we have similar one-to-one correspondences,
this time with respect to oriented triangle groups

TO(k,m,2) = (r,s| rk =s™ = (rs)?> = 1).
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Regular maps, Riemann surfaces, and Galois theory:

Riemann surfaces are two-dimensionaal representations of equations in
complex variables of the form F(x,y) = 0. Very roughly speaking, the
surface is obtained by ‘trying’ to express y as a function of x.

A substantial result of Weil 1950 — Belyj 1972:

A compact Riemann surface F is ‘definable’ via a complex polynomial
equation F(x,y) = 0 with algebraic coefficients if and only if F can be
obtained as a quotient space F = U/ /H for some subgroup H of an
oriented triangle group T°(k, m,2).

The second part says, very roughly, that F ‘comes from a map'.

The absolute Galois group can be studied
via its action on (orientably regular) maps. [Grothendieck 1981]
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Classification of regular maps on a given surface would therefore have
consequences in numerous branches of mathematics.

One more piece of motivation:

By a celebrated theorem of Hurwitz, for any g > 2 the order of a finite
group acting as a group of conformal automorphisms of the Riemann
surface of genus g is bounded above by 84(g — 1).

A classical problem here is classification of the largest possible group of
automorphisms for any given orientable genus g > 2. Accola showed that
this problem reduces to a large extent, for infinitely many genera, to
classification of all regular maps on a surface of given genus.
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Sphere: Platonic maps (and oo of trivial maps)
Projective plane:  Petersen, Ky, duals (and oo of trivial maps)
Torus: Infinitely many nontrivial regular maps
Klein bottle: No regular map!

Hurwitz Theorem - A consequence:
A surface with x < 0 supports just a finite number of regular maps.

@ orientable (nonorientable) surfaces up to genus 7 (8) — Brahana
(1922), Sherk (1959), Grek (1963,66), Garbe (1969,78), Coxeter
and Moser (1984), Scherwa (1985), Bergau and Garbe (1978,89)

@ computer-aided extension up to orientable genus 15 and
nonorientable genus 30 — Conder and Dobcsanyi (2001); extended
by Conder up to orientable genus 100 and nonorientable genus 200;

@ by 2005, classification was available only for a finite number of
surfaces.
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odd, coprime, j > />3,and (j —1)(/—1)=p+1.
Theorem. [A. Breda, R. Nedela, J. Sirafi, Trans. Amer. Math. Soc. 2005]

Let p > 13 be a prime and let n(p) be the number of regular maps with
X = —p, up to isomorphism and duality. Then, n(p) is equal to

0 if  p=1(mod 12)
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Let v(p) be the number of pairs (j, /) such that j and / are
odd, coprime, j > />3,and (j —1)(/—1)=p+1.
Theorem. [A. Breda, R. Nedela, J. Sirafi, Trans. Amer. Math. Soc. 2005]
Let p > 13 be a prime and let n(p) be the number of regular maps with
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0 if  p=1(mod 12)

1 if  p=05 (mod 12)

v(p) if p= -5 (mod 12)

u]
o)
I
i
it

/17



Regular maps on a given surface

Let v(p) be the number of pairs (j, /) such that j and / are
odd, coprime, j > />3,and (j —1)(/—1)=p+1.
Theorem. [A. Breda, R. Nedela, J. Sirafi, Trans. Amer. Math. Soc. 2005]
Let p > 13 be a prime and let n(p) be the number of regular maps with
X = —p, up to isomorphism and duality. Then, n(p) is equal to
0 if  p=1(mod 12)
1 if  p=05 (mod 12)
v(p) if p= -5 (mod 12)
v(p)+1 if p=-1(mod 12).

11 /17



Regular maps on a given surface

Let v(p) be the number of pairs (j, /) such that j and / are
odd, coprime, j > />3,and (j —1)(/—1)=p+1.
Theorem. [A. Breda, R. Nedela, J. Sirafi, Trans. Amer. Math. Soc. 2005]
Let p > 13 be a prime and let n(p) be the number of regular maps with
X = —p, up to isomorphism and duality. Then, n(p) is equal to
0 if  p=1(mod 12)
1 if  p=05 (mod 12)
v(p) if p= -5 (mod 12)
v(p)+1 if p=-1(mod 12).
Unlike the orientable case, we have gaps in the genus spectrum for
nonorientable regular maps.
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Let v(p) be the number of pairs (j, /) such that j and / are
odd, coprime, j > />3,and (j —1)(/—1)=p+1.
Theorem. [A. Breda, R. Nedela, J. Sirafi, Trans. Amer. Math. Soc. 2005]
Let p > 13 be a prime and let n(p) be the number of regular maps with
X = —p, up to isomorphism and duality. Then, n(p) is equal to
0 if  p=1(mod 12)
1 if  p=05 (mod 12)
v(p) if p= -5 (mod 12)
v(p)+1 if p=-1(mod 12).
Unlike the orientable case, we have gaps in the genus spectrum for
nonorientable regular maps.

Belolipetsky and Jones (2005): Classification of orientably regular maps of
genus p + 1 with ‘large’ automorphism groups (of order > 6(g — 1)).
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Let G be the automorphism groups of a regular map of type {m, k}
and of Euler characteristic y. Euler's formula gives:

|G|(km — 2k —2m) = 4km(—x)
Two extreme cases: e x divides |G| and o (x,|G|) =1.
Oddness of —x implies that Sylow 2-subgroups of G are dihedral.
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If G has dihedral Sylow 2-subgroups, then G/O(G) is isomorphic to
(a) a Sylow 2-subgroup of G, or

(b) the alternating group Az, or

(c) a subgroup of Aut(PSL(2, q)) containing PSL(2, q), q odd.
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(1) If pis a prime such that p — 1 is not divisible by 3, 5 or 8, then every
orientably regular map of genus g = p + 1 is regular;

(2) If M is a chiral (orientably regular but not regular) map of genus
g = p+1, where pis prime, and p — 1 is not divisible by 5 or 8, then
either M or its dual has multiple edges;

(3) If M is a regular map of orientable genus g = p + 1, where p is prime
and p > 13, then either M or its dual has multiple edges, and if p =1
mod 6, then both M and its dual have multiple edges.

Infinitely many gaps in the spectrum of chiral maps and in the spectrum of
regular maps with simple underlying graphs.

Another consequence: A new proof of the classification result of Breda,
Nedela, S for regular maps on surfaces of genus p + 2 for odd primes p.
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of regular maps with x = —p?, p an odd prime, is:

e p=3,G={(x,y,2), r®=5s%=sr2s2y = 1), |G| = 108

e p=3,G={(x,y,2), r®*=s*=(rs71)3x=1), |G| =216

e p=17, G =PSL(2,13), |G| = 1092, with presentation

(x,y,2), M3 =53=rs71r2s71r2srLsr=1z = r=5s71Psr=4sy = 1)
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MANY THANKS TO THE ORGANIZERS OF THIS NICE MEETING!
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