Lucas Sequences, Permutation Polynomials, and Inverse Polynomials

Qiang (Steven) Wang

School of Mathematics and Statistics Carleton University

IPM 20 - Combinatorics 2009, Tehran, May 16-21, 2009.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Lucas Sequences

- Fibonacci numbers, Lucas numbers
- Lucas sequences
- Dickson polynomials
- Generalized Lucas Sequences

Permutation polynomials (PP) over finite fields

- Introduction of permutation polynomials
- Permutation binomials and sequences

Inverse Polynomials

- Compositional inverse polynomial of a PP
- Inverse polynomials of permutation binomials

Outline

Lucas Sequences

- Fibonacci numbers, Lucas numbers
- Lucas sequences
- Dickson polynomials
- Generalized Lucas Sequences
- Permutation polynomials (PP) over finite fields
 - Introduction of permutation polynomials
 - Permutation binomials and sequences
- Inverse Polynomials
 - Compositional inverse polynomial of a PP
 - Inverse polynomials of permutation binomials
- 4 Summary

Inverse Polynomials

Summary

Fibonacci numbers, Lucas numbers

Fibonacci numbers

Origin

- Ancient India: Pingala (200 BC).
- West: Leonardo of Pisa, known as Fibonacci (1170-1250), in his Liber Abaci (1202). He considered the growth of an idealised (biologically unrealistic) rabbit population.

Liber Abaci, 1202

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \cdots$$

$$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$$
 for $n \ge 2$.

Lucas Sequences Permutation poly

Permutation polynomials (PP) over finite fields

Inverse Polynomials

Summary

Fibonacci numbers, Lucas numbers

Leonardo of Pisa, Fibonacci (1170-1250)

Figure: Fibonacci (1170-1250)

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Lucas Sequences

Permutation polynomials (PP) over finite fields

Inverse Polynomials

Summary

Fibonacci numbers, Lucas numbers

Fibonacci (1170-1250)

Figure: A statue of Fibonacci in Pisa

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Lucas Sequences	Permutation polynomials (PP) over finite fields	Inverse Polynomials	Summary		
Fibonacci numbers, Lucas numbers					
Lucas numbers					

Lucas numbers (Edouard Lucas)

$$2, 1, 3, 4, 7, 11, 18, 29, 47, 76, \cdots$$

$$L_0 = 2, L_1 = 1, L_n = L_{n-1} + L_{n-2}$$
 for $n \ge 2$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

Lucas Sequences

Permutation polynomials (PP) over finite fields

Inverse Polynomials

Summary

Fibonacci numbers, Lucas numbers

Edouard Lucas (1842-1891)

Figure: Edouard Lucas (1842-1891)

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Inverse Polynomials

Lucas sequences

Lucas sequences

Let P, Q be integers and $\triangle = P^2 - 4Q$ be a nonsquare.

Fibonacci type

$$egin{aligned} & U_0(P,Q) = 0, \ & U_1(P,Q) = 1, \ & U_n(P,Q) = PU_{n-1}(P,Q) - QU_{n-2}(P,Q) \ \text{for} \ n \geq 2. \end{aligned}$$

Lucas type

$$V_0(P, Q) = 2,$$

 $V_1(P, Q) = P,$
 $V_n(P, Q) = PV_{n-1}(P, Q) - QV_{n-2}(P, Q)$ for $n \ge 2.$

 $U_n(1,-1)$ - Fibonacci numbers $U_n(2,-1)$ - Pell numbers $U_n(1,-2)$ - Jacobsthal numbers $V_n(2,-1)$ - Pell-Lucas numbers Lucas sequences

basic properties

• characteristic equation:
$$x^2 - Px + Q = 0$$
.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$a = \frac{P + \sqrt{\bigtriangleup}}{2}$$
 and $b = \frac{P - \sqrt{\bigtriangleup}}{2} \in \mathbb{Q}[\sqrt{\bigtriangleup}]$

•
$$U_n(P,Q) = \frac{a^n - b^n}{a - b}$$
.

•
$$V_n(P,Q) = a^n + b^n$$
.

Lucas sequences

Applications

RSA

• n = pq, p and q are distinct primes.

•
$$k = (p-1)(q-1)$$
.

gcd(e, k) = 1 and ed ≡ 1 (mod k). Here e is called a public key and d a private key. Each party has a pair of keys, i.e., (e_A, d_A) and (e_B, d_B).

 $\begin{array}{c} c \equiv m^{e_B} \pmod{n} \\ \text{Alice} & \longrightarrow & \text{Bob} \end{array}$

 $c^{d_B} \equiv (m^{e_B})^{d_B} \equiv m^{e_B d_B} \equiv m \pmod{n}.$

Lucas Sequences Permutation polynomials (PP) over finite fields **Inverse Polynomials** Summary Lucas sequences Applications LUC • n = pq, p and q are distinct primes. • $k = (p^2 - 1)(q^2 - 1)$. • gcd(e, k) = 1 and $ed \equiv 1 \pmod{k}$. $V_{e_B}(m,1)$ Alice Bob $V_d(V_e(m, 1), 1) \equiv V_{de}(m, 1) \equiv m \pmod{n}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Inverse Polynomials

Summary

Dickson polynomials

٥

Dickson polynomials

$$S_n = \alpha^n + \beta^n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} {n-j \choose j} (\alpha\beta)^j (\alpha+\beta)^{n-2j}.$$

$$D_n(x,a) = \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{n}{n-j} {n-j \choose j} (-a)^j x^{n-2j}, \ n \ge 1.$$

$$D_n(\alpha+\frac{a}{\alpha},a)=\alpha^n+\frac{a^n}{\alpha^n}.$$

Inverse Polynomials

Summary

Dickson polynomials

٥

۰

Dickson polynomials

Dickson polynomials of the first kind of degree n

$$S_n = \alpha^n + \beta^n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} {n-j \choose j} (\alpha\beta)^j (\alpha+\beta)^{n-2j}.$$

$$\mathcal{D}_n(x,a) = \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{n}{n-j} {n-j \choose j} (-a)^j x^{n-2j}, \ n \ge 1.$$

 $D_n(\alpha+\frac{a}{\alpha},a)=\alpha^n+\frac{a^n}{\alpha^n}.$

Inverse Polynomials

Summary

Dickson polynomials

٥

۰

۲

Dickson polynomials

$$S_n = \alpha^n + \beta^n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} {n-j \choose j} (\alpha\beta)^j (\alpha+\beta)^{n-2j}.$$

$$\mathcal{D}_n(x,a) = \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{n}{n-j} {n-j \choose j} (-a)^j x^{n-2j}, \ n \ge 1.$$

$$D_n(\alpha + \frac{a}{\alpha}, a) = \alpha^n + \frac{a^n}{\alpha^n}.$$

Inverse Polynomials

(日) (日) (日) (日) (日) (日) (日)

Summary

Dickson polynomials

Dickson polynomials

- $\alpha^n + \beta^n = (\alpha + \beta)(\alpha^{n-1} + \beta^{n-1}) (\alpha\beta)(\alpha^{n-2} + \beta^{n-2}).$
- $D_n(x, a) = x D_{n-1}(x, a) a D_{n-2}(x, a).$
- $D_0(x, a) = 2, D_1(x, a) = x.$
- $D_n(P, a) = V_n(P, a)$.

Inverse Polynomials

(日) (日) (日) (日) (日) (日) (日)

Summary

Dickson polynomials

Dickson polynomials

- $\alpha^n + \beta^n = (\alpha + \beta)(\alpha^{n-1} + \beta^{n-1}) (\alpha\beta)(\alpha^{n-2} + \beta^{n-2}).$
- $D_n(x, a) = x D_{n-1}(x, a) a D_{n-2}(x, a).$
- $D_0(x, a) = 2, D_1(x, a) = x.$
- $D_n(P, a) = V_n(P, a).$

Inverse Polynomials

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary

Dickson polynomials

Dickson polynomials

Dickson polynomials of the first kind of degree n

- $\alpha^n + \beta^n = (\alpha + \beta)(\alpha^{n-1} + \beta^{n-1}) (\alpha\beta)(\alpha^{n-2} + \beta^{n-2}).$
- $D_n(x, a) = x D_{n-1}(x, a) a D_{n-2}(x, a).$

•
$$D_0(x, a) = 2, D_1(x, a) = x$$
.

• $D_n(P, a) = V_n(P, a).$

Inverse Polynomials

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

Dickson polynomials

Dickson polynomials

Dickson polynomials of the first kind of degree n

- $\alpha^n + \beta^n = (\alpha + \beta)(\alpha^{n-1} + \beta^{n-1}) (\alpha\beta)(\alpha^{n-2} + \beta^{n-2}).$
- $D_n(x, a) = x D_{n-1}(x, a) a D_{n-2}(x, a).$

•
$$D_0(x, a) = 2, D_1(x, a) = x.$$

• $D_n(P, a) = V_n(P, a)$.

Inverse Polynomials

Dickson polynomials

Dickson polynomials

Dickson polynomials of second kind of degree n

۲

$$E_n(x,a) = \sum_{j=0}^{\lfloor n/2 \rfloor} {n-j \choose j} (-a)^j x^{n-2j}.$$

- $E_0(x, a) = 1, E_1(x, a) = x,$ $E_n(x, a) = xE_{n-1}(x, a) - aE_{n-2}(x, a)$
- $E_n(x, a) = \frac{\alpha^{n+1} \beta^{n+1}}{\alpha \beta}$ for $x = \alpha + \beta$ and $\beta = \frac{a}{\alpha}$ and $\alpha^2 \neq a$. Moreover, $E_n(\pm 2\sqrt{a}, a) = (n+1)(\pm\sqrt{a})^n$.
- $E_n(P,Q) = U_{n+1}(P,Q)$

Inverse Polynomials

Summary

Dickson polynomials

Dickson polynomials

Dickson polynomials of second kind of degree n

۲

$$E_n(x,a) = \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n-j}{j} (-a)^j x^{n-2j}.$$

- $E_0(x, a) = 1, E_1(x, a) = x,$ $E_n(x, a) = xE_{n-1}(x, a) - aE_{n-2}(x, a)$
- $E_n(x, a) = \frac{\alpha^{n+1} \beta^{n+1}}{\alpha \beta}$ for $x = \alpha + \beta$ and $\beta = \frac{a}{\alpha}$ and $\alpha^2 \neq a$. Moreover, $E_n(\pm 2\sqrt{a}, a) = (n+1)(\pm\sqrt{a})^n$.
- $E_n(P,Q) = U_{n+1}(P,Q).$

Inverse Polynomials

Summary

Dickson polynomials

Dickson polynomials

Dickson polynomials of second kind of degree n

۲

$$E_n(x,a) = \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n-j}{j} (-a)^j x^{n-2j}.$$

- $E_0(x, a) = 1, E_1(x, a) = x,$ $E_n(x, a) = xE_{n-1}(x, a) - aE_{n-2}(x, a)$
- $E_n(x, a) = \frac{\alpha^{n+1} \beta^{n+1}}{\alpha \beta}$ for $x = \alpha + \beta$ and $\beta = \frac{a}{\alpha}$ and $\alpha^2 \neq a$. Moreover, $E_n(\pm 2\sqrt{a}, a) = (n+1)(\pm\sqrt{a})^n$.

• $E_n(P,Q) = U_{n+1}(P,Q)$.

Inverse Polynomials

Summary

Dickson polynomials

Dickson polynomials

Dickson polynomials of second kind of degree n

۲

$$E_n(x,a) = \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n-j}{j} (-a)^j x^{n-2j}.$$

- $E_0(x, a) = 1, E_1(x, a) = x,$ $E_n(x, a) = xE_{n-1}(x, a) - aE_{n-2}(x, a)$
- $E_n(x, a) = \frac{\alpha^{n+1} \beta^{n+1}}{\alpha \beta}$ for $x = \alpha + \beta$ and $\beta = \frac{a}{\alpha}$ and $\alpha^2 \neq a$. Moreover, $E_n(\pm 2\sqrt{a}, a) = (n+1)(\pm\sqrt{a})^n$.
- $E_n(P,Q) = U_{n+1}(P,Q).$

Lucas Sequences
 Permutation polynomials (PP) over finite fields
 Inverse Polynomials
 Summary

 Generalized Lucas Sequences

$$V_n(1, -1)$$
 $V_n(1, -1)$
 $V_n(1, -1)$

Lucas numbers $V_n(1, -1)$

$$2, 1, 3, 4, 7, \cdots \implies V_n(1, -1) = (\frac{1+\sqrt{5}}{2})^n + (\frac{1-\sqrt{5}}{2})^n.$$

$$a = \frac{1+\sqrt{5}}{2} = 2\cos(\frac{\pi}{5}) = e^{-\frac{\pi}{5}} + e^{\frac{\pi}{5}}.$$

$$b = rac{1-\sqrt{5}}{2} = 2\cos(rac{3\pi}{5}) = e^{-rac{3\pi}{5}} + e^{rac{3\pi}{5}}$$

Let η be a primitive 10th root of unity. Then

$$a = \eta + \eta^{-1}$$
 and $b = \eta^{3} + \eta^{-3}$.

Hence

$$V_n(1,-1) = (\eta + \eta^{-1})^n + (\eta^3 + \eta^{-3})^n.$$

Inverse Polynomials

Generalized Lucas Sequences

Definition

Generalized Lucas sequence (Akbary, W., 2006)

For any odd integer $\ell = 2k + 1 \ge 3$ and η be a fixed primitive 2ℓ th root of unity. The generalized Lucas sequence of order $k = \frac{\ell-1}{2}$ is defined as

$$a_n = \sum_{\substack{t=1\\t \text{ odd}}}^{\ell-1} (\eta^t + \eta^{-t})^n = \sum_{t=1}^{\frac{\ell-1}{2}} ((-1)^{t+1} (\eta^t + \eta^{-t}))^n.$$

・ロト・西ト・西ト・西ト・日・ シック

Inverse Polynomials

Summary

Generalized Lucas Sequences

Characteristic polynomials

Characteristic polynomials

$g_k(x) = \prod_{\substack{t=1\ t \ odd}}^{\ell-1} (x-(\eta^t+\eta^{-t})).$			
l	initial values	$g_k(x)$	
$\ell = 3$	1	<i>x</i> – 1	
$\ell=5$	2,1	$x^2 - x - 1$	
$\ell = 7$ 3, 1, 5		$x^3 - x^2 - 2x + 1$	
$\ell = 9$	4, 1, 7, 4	$x^4 - x^3 - 3x^2 + 2x + 1$	
$\ell = 11$	5, 1, 9, 4, 25	$x^5 - x^4 - 4x^3 + 3x^2 + 3x - 1$	

Generalized Lucas Sequences

Recurrence relation of characteristic polynomials

Theorem (W. 2009)

Let
$$\ell = 2k + 1$$
, $g_0(x) = 1$, and $g_k(x) = \prod_{\substack{t=1 \ t \text{ odd}}}^{\ell-1} (x - (\eta^t + \eta^{-t})).$

Then

•
$$g_k(x) = E_k(x, 1) - E_{k-1}(x, 1)$$
 for $k \ge 1$.

•
$$g_k(x) = \sum_{i=0}^k (-1)^{\lceil \frac{i}{2} \rceil} \binom{k-i+\lfloor \frac{i}{2} \rfloor}{\lfloor \frac{i}{2} \rfloor} x^{k-i}.$$

- $g_k(x)$ satisfies the following recurrence relation: $g_0(x) = 1, g_1(x) = x - 1,$ $g_k(x) = xg_{k-1}(x) - g_{k-2}(x)$ for $k \ge 2$.
- The generating function of the above recurrence is $G(x; t) = \frac{1-t}{1-xt+t^2}$.

Inverse Polynomials

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

Generalized Lucas Sequences

Sketch of the proof

$$E_{k}(x,1) - E_{k-1}(x,1) = E_{k}(u+1/u) - E_{k-1}(u+1/u) = \frac{u^{k+1} - u^{-(k+1)}}{u-u^{-1}} - \frac{u^{k} - u^{-k}}{u-u^{-1}} = (u^{2k+1} + 1)/(u^{n}(u+1))$$

- η is a primitive $2\ell = 4k + 2$ root of unity implies that $\eta^{2k+1} = -1$.
- $\eta^t + \eta^{-t}$ is a root of $E_k(u+1/u) E_{k-1}(u+1/u)$ for any odd *t*.

Inverse Polynomials

Summary

Generalized Lucas Sequences

Sketch of the proof

$$E_{k}(x,1) - E_{k-1}(x,1) = E_{k}(u+1/u) - E_{k-1}(u+1/u) = \frac{u^{k+1} - u^{-(k+1)}}{u-u^{-1}} - \frac{u^{k} - u^{-k}}{u-u^{-1}} = (u^{2k+1} + 1)/(u^{n}(u+1))$$

- η is a primitive $2\ell = 4k + 2$ root of unity implies that $\eta^{2k+1} = -1$.
- $\eta^t + \eta^{-t}$ is a root of $E_k(u+1/u) E_{k-1}(u+1/u)$ for any odd *t*.

Inverse Polynomials

Summary

Generalized Lucas Sequences

Sketch of the proof

$$E_{k}(x,1) - E_{k-1}(x,1) = E_{k}(u+1/u) - E_{k-1}(u+1/u) \\ = \frac{u^{k+1} - u^{-(k+1)}}{u-u^{-1}} - \frac{u^{k} - u^{-k}}{u-u^{-1}} \\ = (u^{2k+1} + 1)/(u^{n}(u+1))$$

- η is a primitive $2\ell = 4k + 2$ root of unity implies that $\eta^{2k+1} = -1$.
- $\eta^t + \eta^{-t}$ is a root of $E_k(u+1/u) E_{k-1}(u+1/u)$ for any odd *t*.

Outline

Lucas Sequences

- Fibonacci numbers, Lucas numbers
- Lucas sequences
- Dickson polynomials
- Generalized Lucas Sequences

Permutation polynomials (PP) over finite fields

- Introduction of permutation polynomials
- Permutation binomials and sequences

Inverse Polynomials

- Compositional inverse polynomial of a PP
- Inverse polynomials of permutation binomials

4 Summary

Inverse Polynomials

Summary

Introduction of permutation polynomials

Introduction of PPs

Definition

A polynomial $f(x) \in \mathbb{F}_q[x]$ is a permutation polynomial (PP) of \mathbb{F}_q if *f* permutes the elements of \mathbb{F}_q . Equivalently,

- the function $f : c \mapsto f(c)$ is onto;
- the function $f : c \mapsto f(c)$ is one-to-one;
- f(x) = a has a (unique) solution in \mathbb{F}_q for each $a \in \mathbb{F}_q$.
- the plane curve f(x) f(y) = 0 has no \mathbb{F}_q -rational point other than points on the diagonal x = y.

Inverse Polynomials

Summary

Introduction of permutation polynomials

Introduction of PPs

Some classical examples

•
$$P(x) = ax + b, a \neq 0$$

• $P(x) = x^n$ is a PP of \mathbb{F}_q iff (n, q - 1) = 1. (RSA)

- Dickson polynomial of the first kind D_n(x, ±1) of degree n over 𝔽_q is PP iff (n, q² − 1) = 1. (LUC)
- $P_1 \circ P_2$ is a PP iff P_1 and P_2 are PPs.
- x^m is the inverse of x^n iff $mn \equiv 1 \pmod{q-1}$.
- $D_n(D_m(x,1),1) = D_{mn}(x,1) = x$ iff $mn \equiv 1 \pmod{q^2 1}$.

・ロト・日本・日本・日本・日本・日本

Inverse Polynomials

Summary

Introduction of permutation polynomials

Introduction of PPs

Fundamental Questions

Classification, enumeration, and applications of PPs.

Problem 13, R. Lidl and G. Mullen, 1993

Determine conditions on k, r, and q so that $P(x) = x^k + ax^r$ permutes \mathbb{F}_q with $a \in \mathbb{F}_q^*$.

・ロト・日本・日本・日本・日本

Inverse Polynomials

Summary

Introduction of permutation polynomials

Introduction of PPs

Fundamental Questions

Classification, enumeration, and applications of PPs.

Problem 13, R. Lidl and G. Mullen, 1993

Determine conditions on k, r, and q so that $P(x) = x^k + ax^r$ permutes \mathbb{F}_q with $a \in \mathbb{F}_q^*$.

・ロト・日本・日本・日本・日本・日本

Set up

$$P(x) = x^r f(x^s) = x^r (x^{es} + a), s = (k - r, q - 1), \ell = \frac{q - 1}{s}$$

Some necessary conditions

If $a = b^s$, then $x^r(x^{es} + a)$ is PP iff $x^r(x^{es} + 1)$ is PP.

1 + ζ^{ei} ≠ 0 for i = 0, 1, ..., ℓ − 1 implies that (2e, ℓ) = 1 where ζ is a primitive ℓ-th root of unity. Hence ℓ is odd.

•
$$2^s = 1$$
 in \mathbb{F}_q .

• $2r + es \not\equiv 0 \pmod{\ell}$.

Inverse Polynomials

Permutation binomials and sequences

$$P(x) = x^k + x^r$$

Theorem (L. Wang, 2002)

1. For $\ell = 3$, P(x) is a PP of \mathbb{F}_q if and only if (i) (r, s) = 1. (ii) $2r + es \not\equiv 0 \pmod{3}$. (iii) $2^s \equiv 1 \pmod{p}$.

Theorem (L. Wang, 2002)

2. For
$$\ell = 5$$
, $P(x)$ is a PP of \mathbb{F}_q if and only if
(i) $(r, s) = 1$.
(ii) $2r + es \neq 0 \pmod{5}$.
(iii) $2^s \equiv 1 \pmod{p}$.
(iv) $(\frac{1+\sqrt{5}}{2})^s + (\frac{1-\sqrt{5}}{2})^s \equiv 2 \pmod{p}$.

Inverse Polynomials

Permutation binomials and sequences

$$P(x) = x^k + x^r$$

Theorem (L. Wang, 2002)

1. For $\ell = 3$, P(x) is a PP of \mathbb{F}_q if and only if (i) (r, s) = 1. (ii) $2r + es \neq 0 \pmod{3}$. (iii) $2^s \equiv 1 \pmod{p}$.

Theorem (L. Wang, 2002)

2. For $\ell = 5$, P(x) is a PP of \mathbb{F}_q if and only if (i) (r, s) = 1. (ii) $2r + es \neq 0 \pmod{5}$. (iii) $2^s \equiv 1 \pmod{p}$. (iv) $L_s \equiv 2 \pmod{p}$, where L_n is the n-th element of the Lucas sequence defined by the recursion $L_{n+2} = L_n + L_{n+1}$, $L_0 = 2$ and $L_1 = 1$.

Inverse Polynomials

Summary

Permutation binomials and sequences

Connection between PPs and sequences

Theorem (W. 2006)

Let $q = p^m$ be a odd prime power and $q - 1 = \ell s$. Assume that

 $(2e, \ell) = 1, (r, s) = 1, 2^s \equiv 1 \pmod{p}, 2r + es \neq 0 \pmod{\ell}.$

Then $P(x) = x^r(x^{es} + 1)$ is a PP of \mathbb{F}_q iff

$$\sum_{j=0}^{u_c} t_j^{(j_c)} a_{cs+j} = -1,$$
 (1)

for all $c = 1, ..., \ell - 1$, where $\{a_n\}$ is the generalized Lucas sequence of order $\frac{\ell-1}{2}$ over \mathbb{F}_p , $j_c = c(2e^{\phi(\ell)-1}r + s) \mod 2\ell$, $t_j^{(j_c)} = [x^j]D_{j_c}(x, 1)$ is the coefficient of x^j in $D_{j_c}(x, 1)$.

Inverse Polynomials

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Permutation binomials and sequences

Idea

Theorem 1 (Akbary, W. 07)

Let $q - 1 = \ell s$ for some positive integers *I* and *s*. Let ζ be a primitive ℓ -th root of unity in \mathbb{F}_q and f(x) be a polynomial over \mathbb{F}_q . Then the polynomial $P(x) = x^r f(x^s)$ is a PP of \mathbb{F}_q if and only if

(i)
$$(r, s) = 1$$
.
(ii) $f(\zeta^t) \neq 0$, for each $t = 0, \dots, \ell - 1$.
(iii) $\sum_{t=0}^{\ell-1} \zeta^{crt} f(\zeta^t)^{cs} = 0$ for each $c = 1, \dots, \ell - 1$

Remark: cyclotomic permutation

Permutation binomials and sequences

Remark

- Equation (1) can be written as $D_{j_c}(\{a_{cs}\}) = -1$ for all $c = 1, \dots, \ell 1$.
- The degree j_c is even for any c.
- Since $g_k(\{a_{n_c}\}) = 0$, we have $R_m(\{a_{n_c}\}) = D_m(\{a_{n_c}\})$ where $R_m(x)$ is the remainder of $D_m(x)$ divided by $g_k(x)$.

Inverse Polynomials

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Summary

Permutation binomials and sequences

permutation binomials

Theorem (Akbary, W., 06)

Under the following conditions on ℓ , r, e and s,

 $(r, s) = 1, (e, \ell) = 1, and \ell is odd.$ (*)

the binomial $P(x) = x^r(x^{es} + 1)$ is a permutation binomial of \mathbb{F}_q if $(2r + es, \ell) = 1$, $2^s \equiv 1 \pmod{p}$ and $\{a_n\}$ is s-periodic over \mathbb{F}_p .

Inverse Polynomials

Summary

Permutation binomials and sequences

Permutation binomials

Theorem (Akbary, W., 06)

Let p be an odd prime and $q = p^m$. Let ℓ be an odd positive integer. Let $p \equiv -1 \pmod{\ell}$ or $p \equiv 1 \pmod{\ell}$ and $\ell \mid m$. Under the conditions (*) on r, e and s, the binomial $P(x) = x^r(x^{es} + 1)$ is a permutation binomial of \mathbb{F}_q if and only if $(2r + es, \ell) = 1$.

Why? $g_{\frac{\ell-1}{2}}(x)$ splits over $\mathbb{F}_p[x]$. Let γ_j $(1 \le j \le \frac{l-1}{2})$ be roots of $g_{\frac{\ell-1}{2}}(x)$ in \mathbb{F}_p , we have $\gamma_j^s \equiv 1 \pmod{p}$ for $j = 1, \dots, \frac{\ell-1}{2}$. The sequence $\{a_n\}$ is always *s*-periodic.

Inverse Polynomials

Summary

Permutation binomials and sequences

Case $\ell = 7$

Theorem (Akbary, W., 05)

Let q - 1 = 7s and $1 \le e \le 6$. Then $P(x) = x^r(x^{es} + 1)$ is a permutation binomial of \mathbb{F}_q if and only if (r, s) = 1, $2^s \equiv 1 \pmod{p}$, $2r + es \not\equiv 0 \pmod{7}$ and $\{a_n\}$ satisfies one of the following: (a) $a_s = a_{-s} = 3$ in \mathbb{F}_p ; (b) $a_{-cs-1} = -1 + \alpha$, $a_{-cs} = -1 - \alpha$ and $a_{-cs+1} = 1$ in \mathbb{F}_p , where *c* is the inverse of $s + 2e^5r$ modulo 7 and $\alpha^2 + \alpha + 2 = 0$ in \mathbb{F}_p .

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Inverse Polynomials

Summary

Permutation binomials and sequences

Case I=7

Corollary (Akbary, W., 05)

Let q - 1 = 7s, $1 \le e \le 6$, and p be a prime with $\binom{p}{7} = -1$. Then $P(x) = x^r(1 + x^{es})$ is a permutation binomial of \mathbb{F}_q if and only if (r, s) = 1, $2^s \equiv 1 \pmod{p}$ and $2r + es \not\equiv 0 \pmod{7}$.

Outline

Lucas Sequences

- Fibonacci numbers, Lucas numbers
- Lucas sequences
- Dickson polynomials
- Generalized Lucas Sequences
- Permutation polynomials (PP) over finite fields
 - Introduction of permutation polynomials
 - Permutation binomials and sequences

Inverse Polynomials

- Compositional inverse polynomial of a PP
- Inverse polynomials of permutation binomials

Summary

Compositional inverse polynomial of a PP

Open problem

Let $P(x) = a_0 + a_1 + \dots + a_{q-2}x^{q-2}$ be a PP of \mathbb{F}_q and $Q(x) = b_0 + b_1x + \dots + b_{q-2}x^{q-2}$ be the compositional inverse of P(x) modulo $x^q - x$.

Problem 10 (Mullen, 1993): Compute the coefficients of the inverse polynomial of a permutation polynomial efficiently.

Inverse Polynomials

Inverse polynomials of permutation binomials

Theorem (W. 2009)

Let p be odd prime and $q = p^m$, $\ell \ge 3$ is odd, $q - 1 = \ell s$, and $(e, \ell) = 1$. If $P(x) = x^r(x^{es} + 1)$ is a permutation polynomial of \mathbb{F}_q and $Q(x) = b_0 + b_1 x + \dots + b_{q-2} x^{q-2}$ is the inverse polynomial of P(x) modulo $x^q - x$, then at most ℓ nonzero coefficients b_k corresponding to $k \equiv r^{-1} \pmod{s}$. Let $\overline{r} = r^{-1} \mod s$ and $n_c = q - 1 - cs - \overline{r} = (\ell - c)s - \overline{r}$ with $c = 0, \dots, \ell - 1$. Then

$$b_{q-1-n_c} = \frac{1}{\ell} (2^{n_c} + \sum_{j=0}^{u_c} t_j^{(u_c)} a_{n_c+j}),$$
 (2)

where $u_c = 2(c + \frac{r\bar{r}-1}{s})e^{\phi(\ell)-1} + cs + \bar{r} \mod 2\ell$, $t_j^{(u_c)}$ is the coefficient of x^j of Dickson polynomial $D_{u_c}(x)$ of the first kind, and $\{a_n\}_{n=0}^{\infty}$ is the generalized Lucas sequence of order $\frac{\ell-1}{2}$.

Inverse Polynomials

Summary

Inverse polynomials of permutation binomials

Idea

It is well known that

$$\sum_{\mathbf{y}\in\mathbb{F}_q}\mathbf{y}^{q-1-n}Q(s)=-b_n.$$

Since P(x) is a PP of \mathbb{F}_q ,

$$b_n = -\sum_{y \in \mathbb{F}_q} y P(y)^{q-1-n} = \frac{1}{\ell} \sum_{t=0}^{\ell-1} \zeta^* (\zeta^{-et} + 1)^{q-1-n}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Inverse polynomials of permutation binomials

Remark

• Equation (2) can be written as

$$b_{q-1-n_c} = \frac{1}{\ell} \left(2^{s-\bar{r}} + D_{u_c}(\{a_{n_c}\}) \right).$$

- The degree u_n is odd for any c.
- Since $g_k(\{a_{n_c}\}) = 0$, we have $R_m(\{a_{n_c}\}) = D_m(\{a_{n_c}\})$ where $R_m(x)$ is the remainder of $D_m(x)$ divided by $g_k(x)$.

Inverse polynomials of permutation binomials

Example: $\ell = 3$

In this case, k = 1 and $g_1(x) = x - 1$. So $\{a_n\}$ is the constant sequence 1, 1, Moreover, $R_2(x) = -1$ and $R_4(x) = -1$ mean that $R_2(\{a_n\}) = R_4(\{a_n\}) = -a_n = -1$ is automatically satisfied. Hence $x^r(x^{es} + 1)$ is PP of \mathbb{F}_q iff (r, s) = 1, $2r + es \neq 0$ (mod 3), and $2^s \equiv 1 \pmod{p}$. Furthermore, $R_1(x) = 1$, $R_3(x) = -2$, $R_5(x) = 1$. Hence

 $b_{q-1-n_c} = \frac{1}{3}(2^{-\bar{r}} + D_{u_c}(\{a_n\})).$

$$D_{u_c}(\{a_{n_c}\}) = \begin{cases} a_{n_c} = 1 & \text{if } u_c \equiv 1,5 \pmod{6} \\ -2a_{n_c} = -2 & \text{if } u_c \equiv 3 \pmod{6} \end{cases}$$
$$b_{q-1-n_c} = \begin{cases} \frac{1}{3}(2^{s-\bar{r}}+1) & \text{if } u_c \equiv 1,5 \pmod{6} \\ \frac{1}{3}(2^{s-\bar{r}}-2) & \text{if } u_c \equiv 3 \pmod{6} \end{cases}$$

Inverse Polynomials

Inverse polynomials of permutation binomials

Example: $\ell = 5$

$$k = 2, g_1(x) = x^2 - x - 1$$
 and $\{a_n\}$ is the Lucas sequence $R_2(x) = x - 1, R_4(x) = -x, R_6(x) = -x, R_8(x) = x - 1.$

$$D_{j_c}(\{a_{cs}\}) = \begin{cases} a_{cs+1} - a_{cs} & \text{if } j_c \equiv 2,8 \pmod{10} \\ -a_{cs+1} & \text{if } j_c \equiv 4,6 \pmod{10} \end{cases}$$
$$(x) = x, R_3(x) = 1 - x, R_5(x) = -2, R_7(x) = 1 - x,$$

 $R_1(x) = x, R_3(x) = 1 - x, R_5(x) = -2, R_7(x) = 1 - x, R_9(x) = x.$

$$D_{u_c}(\{a_{n_c}\}) = \begin{cases} a_{n_c+1} & \text{if } u_c \equiv 1,9 \pmod{10} \\ a_{n_c} - a_{n_c+1} & \text{if } u_c \equiv 3,7 \pmod{10} \\ -2a_{n_c} & \text{if } u_c \equiv 5 \pmod{10} \end{cases}$$

$$b_{q-1-n_c} = \begin{cases} \frac{1}{5}(2^{n_c} + a_{n_c+1}) & \text{if } u_c \equiv 1,9 \pmod{10} \\ \frac{1}{5}(2^{n_c} - a_{n_c+1}) & \text{if } u_c \equiv 3,7 \pmod{10} \\ \frac{1}{5}(2^{n_c} - 2a_{n_c}) & \text{if } u_c \equiv 5 \pmod{10} \end{cases}$$

Inverse polynomials of permutation binomials

PPs of form
$$x^r(x^{\frac{e(q-1)}{5}} + 1)$$
 and inverse PPs over \mathbb{F}_{19^2}

PP	Inverse of PP
$x + x^{73}$	$10x + 10x^{73} + 10x^{145} + 9x^{217} + 9x^{289}$
$x^{5} + x^{77}$	$3x^{29} + 14x^{101} + 3x^{173} + 16x^{245} + 16x^{317}$
$x^7 + x^{79}$	$5x^{31} + 5x^{103} + 10x^{175} + 2x^{247} + 10x^{319}$
$x^{11} + x^{83}$	$16x^{59} + 2x^{131} + 5x^{203} + 2x^{275} + 16x^{347}$
$x^{13} + x^{85}$	$5x^{61} + 18x^{133} + 18x^{205} + 5x^{277} + 7x^{349}$
$x^{17} + x^{89}$	$x^{89} + x^{305}$
$x^{23} + x^{95}$	$3x^{47} + 14x^{119} + 3x^{191} + 16x^{263} + 16x^{335}$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ > ◆□ >

Outline

Lucas Sequences

- Fibonacci numbers, Lucas numbers
- Lucas sequences
- Dickson polynomials
- Generalized Lucas Sequences
- Permutation polynomials (PP) over finite fields
 - Introduction of permutation polynomials
 - Permutation binomials and sequences
- Inverse Polynomials
 - Compositional inverse polynomial of a PP
 - Inverse polynomials of permutation binomials

Lucas Sequences

Permutation polynomials (PP) over finite fields

Inverse Polynomials

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Summary

Summary

 Some connections between generalized Lucas sequences and PPs (inverses)

Question

• When is the inverse of $x^r(x^{es} + 1)$ still a binomial for $\ell > 3$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thank you for your attention.

Happy birthday, Reza and IPM!