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Fibonacci numbers, Lucas numbers

Fibonacci numbers

Origin
Ancient India: Pingala (200 BC).
West: Leonardo of Pisa, known as Fibonacci (1170-1250),
in his Liber Abaci (1202). He considered the growth of an
idealised (biologically unrealistic) rabbit population.

Liber Abaci, 1202

0,1,1,2,3,5,8,13,21,34,55, · · ·

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.
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Fibonacci numbers, Lucas numbers

Leonardo of Pisa, Fibonacci (1170-1250)

Figure: Fibonacci (1170-1250)
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Fibonacci numbers, Lucas numbers

Fibonacci (1170-1250)

Figure: A statue of Fibonacci in Pisa
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Fibonacci numbers, Lucas numbers

Lucas numbers

Lucas numbers (Edouard Lucas)

2,1,3,4,7,11,18,29,47,76, · · ·

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.
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Fibonacci numbers, Lucas numbers

Edouard Lucas (1842-1891)

Figure: Edouard Lucas (1842-1891)
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Lucas sequences

Lucas sequences

Let P,Q be integers and 4 = P2 − 4Q be a nonsquare.

Fibonacci type
U0(P,Q) = 0,
U1(P,Q) = 1,
Un(P,Q) = PUn−1(P,Q)−QUn−2(P,Q) for n ≥ 2.

Lucas type
V0(P,Q) = 2,
V1(P,Q) = P,
Vn(P,Q) = PVn−1(P,Q)−QVn−2(P,Q) for n ≥ 2.

Un(1,−1) - Fibonacci numbers Vn(1,−1) - Lucas numbers
Un(2,−1) - Pell numbers Vn(2,−1) - Pell-Lucas numbers
Un(1,−2) - Jacobsthal numbers
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Lucas sequences

basic properties

characteristic equation: x2 − Px + Q = 0.

a = P+
√
4

2 and b = P−
√
4

2 ∈ Q[
√
4]

Un(P,Q) = an−bn

a−b .

Vn(P,Q) = an + bn.
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Lucas sequences

Applications

RSA
n = pq, p and q are distinct primes.
k = (p − 1)(q − 1).
gcd(e, k) = 1 and ed ≡ 1 (mod k). Here e is called a
public key and d a private key. Each party has a pair of
keys, i.e., (eA,dA) and (eB,dB).

c ≡ meB (mod n)
Alice −→ Bob

cdB ≡ (meB )dB ≡ meBdB ≡ m (mod n).
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Lucas sequences

Applications

LUC
n = pq, p and q are distinct primes.
k = (p2 − 1)(q2 − 1).
gcd(e, k) = 1 and ed ≡ 1 (mod k).

VeB (m,1)
Alice −→ Bob

Vd (Ve(m,1),1) ≡ Vde(m,1) ≡ m (mod n).
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Dickson polynomials

Dickson polynomials

Dickson polynomials of the first kind of degree n

Sn = αn + βn =

bn/2c∑
j=0

(−1)j n
n − j

(
n − j

j

)
(αβ)j(α + β)n−2j .

Dn(x ,a) =

bn/2c∑
j=0

n
n − j

(
n − j

j

)
(−a)jxn−2j , n ≥ 1.

Dn(α +
a
α
,a) = αn +

an

αn .
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Dickson polynomials

Dickson polynomials
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Dickson polynomials

Dickson polynomials
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Dickson polynomials

Dickson polynomials

Dickson polynomials of the first kind of degree n

αn + βn = (α + β)(αn−1 + βn−1)− (αβ)(αn−2 + βn−2).

Dn(x ,a) = xDn−1(x ,a)− aDn−2(x ,a).

D0(x ,a) = 2,D1(x ,a) = x .
Dn(P,a) = Vn(P,a).



logo

Lucas Sequences Permutation polynomials (PP) over finite fields Inverse Polynomials Summary
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Dickson polynomials

Dickson polynomials

Dickson polynomials of the first kind of degree n
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Dickson polynomials

Dickson polynomials

Dickson polynomials of second kind of degree n

En(x ,a) =

bn/2c∑
j=0

(
n − j

j

)
(−a)jxn−2j .

E0(x ,a) = 1, E1(x ,a) = x ,
En(x ,a) = xEn−1(x ,a)− aEn−2(x ,a)

En(x ,a) = αn+1−βn+1

α−β for x = α + β and β = a
α and α2 6= a.

Moreover, En(±2
√

a,a) = (n + 1)(±
√

a)n.
En(P,Q) = Un+1(P,Q).
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Dickson polynomials
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Generalized Lucas Sequences

Vn(1,−1)

Lucas numbers Vn(1,−1)

2,1,3,4,7, · · · =⇒ Vn(1,−1) = (1+
√

5
2 )n + (1−

√
5

2 )n.

a =
1 +
√

5
2

= 2 cos(
π

5
) = e−

π
5 + e

π
5 .

b =
1−
√

5
2

= 2 cos(
3π
5

) = e−
3π
5 + e

3π
5 .

Let η be a primitive 10th root of unity. Then

a = η + η−1 and b = η3 + η−3.

Hence
Vn(1,−1) = (η + η−1)n + (η3 + η−3)n.
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Generalized Lucas Sequences

Definition

Generalized Lucas sequence (Akbary, W., 2006)
For any odd integer ` = 2k + 1 ≥ 3 and η be a fixed primitive
2`th root of unity. The generalized Lucas sequence of order
k = `−1

2 is defined as

an =
`−1∑
t=1

t odd

(ηt + η−t )n =

`−1
2∑

t=1

((−1)t+1(ηt + η−t ))n.
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Generalized Lucas Sequences

Characteristic polynomials

Characteristic polynomials

gk (x) =
`−1∏
t=1

t odd

(x − (ηt + η−t )).

` initial values gk (x)

` = 3 1 x − 1
` = 5 2,1 x2 − x − 1
` = 7 3,1,5 x3 − x2 − 2x + 1
` = 9 4,1,7,4 x4 − x3 − 3x2 + 2x + 1
` = 11 5,1,9,4,25 x5 − x4 − 4x3 + 3x2 + 3x − 1
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Generalized Lucas Sequences

Recurrence relation of characteristic polynomials

Theorem (W. 2009)

Let ` = 2k + 1, g0(x) = 1, and gk (x) =
`−1∏
t=1

t odd

(x − (ηt + η−t )).

Then
gk (x) = Ek (x ,1)− Ek−1(x ,1) for k ≥ 1.

gk (x) =
k∑

i=0

(−1)d
i
2 e
(

k − i + b i
2c

b i
2c

)
xk−i .

gk (x) satisfies the following recurrence relation:
g0(x) = 1, g1(x) = x − 1,
gk (x) = xgk−1(x)− gk−2(x) for k ≥ 2.
The generating function of the above recurrence is
G(x ; t) = 1−t

1−xt+t2 .
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Generalized Lucas Sequences

Sketch of the proof

Ek (x ,1)− Ek−1(x ,1) = Ek (u + 1/u)− Ek−1(u + 1/u)

= uk+1−u−(k+1)

u−u−1 − uk−u−k

u−u−1

= (u2k+1 + 1)/(un(u + 1))

η is a primitive 2` = 4k + 2 root of unity implies that
η2k+1 = −1.
ηt + η−t is a root of Ek (u + 1/u)− Ek−1(u + 1/u) for any
odd t .
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Introduction of permutation polynomials

Introduction of PPs

Definition
A polynomial f (x) ∈ Fq[x ] is a permutation polynomial (PP) of
Fq if f permutes the elements of Fq.
Equivalently,

the function f : c 7→ f (c) is onto;
the function f : c 7→ f (c) is one-to-one;
f (x) = a has a (unique) solution in Fq for each a ∈ Fq.
the plane curve f (x)− f (y) = 0 has no Fq-rational point
other than points on the diagonal x = y .
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Introduction of permutation polynomials

Introduction of PPs

Some classical examples

P(x) = ax + b,a 6= 0
P(x) = xn is a PP of Fq iff (n,q − 1) = 1. (RSA)
Dickson polynomial of the first kind Dn(x ,±1) of degree n
over Fq is PP iff (n,q2 − 1) = 1. (LUC)
P1 ◦ P2 is a PP iff P1 and P2 are PPs.
xm is the inverse of xn iff mn ≡ 1 (mod q − 1).
Dn(Dm(x ,1),1) = Dmn(x ,1) = x iff mn ≡ 1 (mod q2 − 1).
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Introduction of permutation polynomials

Introduction of PPs

Fundamental Questions
Classification, enumeration, and applications of PPs.

Problem 13, R. Lidl and G. Mullen, 1993

Determine conditions on k , r , and q so that P(x) = xk + ax r

permutes Fq with a ∈ F∗q.
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Permutation binomials and sequences

P(x) = xk + ax r

Set up

P(x) = x r f (xs) = x r (xes + a), s = (k − r ,q − 1), ` = q−1
s .

Some necessary conditions
If a = bs, then x r (xes + a) is PP iff x r (xes + 1) is PP.

(r , s) = 1,
1 + ζei 6= 0 for i = 0,1, . . . , `− 1 implies that (2e, `) = 1
where ζ is a primitive `-th root of unity. Hence ` is odd.
2s = 1 in Fq.
2r + es 6≡ 0 (mod `).
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Permutation binomials and sequences

P(x) = xk + x r

Theorem (L. Wang, 2002)
1. For ` = 3, P(x) is a PP of Fq if and only if

(i) (r , s) = 1.
(ii) 2r + es 6≡ 0 (mod 3).
(iii) 2s ≡ 1 (mod p).

Theorem (L. Wang, 2002)
2. For ` = 5, P(x) is a PP of Fq if and only if

(i) (r , s) = 1.
(ii) 2r + es 6≡ 0 (mod 5).
(iii) 2s ≡ 1 (mod p).

(iv) (1+
√

5
2 )s + (1−

√
5

2 )s ≡ 2 (mod p).
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Permutation binomials and sequences

P(x) = xk + x r

Theorem (L. Wang, 2002)
1. For ` = 3, P(x) is a PP of Fq if and only if

(i) (r , s) = 1.
(ii) 2r + es 6≡ 0 (mod 3).
(iii) 2s ≡ 1 (mod p).

Theorem (L. Wang, 2002)
2. For ` = 5, P(x) is a PP of Fq if and only if

(i) (r , s) = 1.
(ii) 2r + es 6≡ 0 (mod 5).
(iii) 2s ≡ 1 (mod p).

(iv) Ls ≡ 2 (mod p), where Ln is the n-th element of the Lucas
sequence defined by the recursion Ln+2 = Ln +Ln+1, L0 = 2 and
L1 = 1.
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Permutation binomials and sequences

Connection between PPs and sequences

Theorem (W. 2006)
Let q = pm be a odd prime power and q − 1 = `s. Assume that

(2e, `) = 1, (r , s) = 1, 2s ≡ 1 (mod p), 2r + es 6≡ 0 (mod `).

Then P(x) = x r (xes + 1) is a PP of Fq iff

uc∑
j=0

t(jc)
j acs+j = −1, (1)

for all c = 1, . . . , `− 1, where {an} is the generalized Lucas
sequence of order `−1

2 over Fp, jc = c(2eφ(`)−1r + s) mod 2`,
t(jc)
j = [x j ]Djc (x ,1) is the coefficient of x j in Djc (x ,1).
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Permutation binomials and sequences

Idea

Theorem 1 (Akbary, W. 07)

Let q − 1 = `s for some positive integers l and s. Let ζ be a
primitive `-th root of unity in Fq and f (x) be a polynomial over
Fq. Then the polynomial P(x) = x r f (xs) is a PP of Fq if and
only if

(i) (r , s) = 1.
(ii) f (ζ t ) 6= 0, for each t = 0, · · · , `− 1.

(iii)
`−1∑
t=0

ζcrt f (ζ t )cs = 0 for each c = 1, · · · , `− 1.

Remark: cyclotomic permutation
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Permutation binomials and sequences

Remark
Equation (1) can be written as Djc ({acs}) = −1 for all
c = 1, . . . , `− 1.
The degree jc is even for any c.
Since gk ({anc}) = 0, we have Rm({anc}) = Dm({anc})
where Rm(x) is the remainder of Dm(x) divided by gk (x).
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Permutation binomials and sequences

permutation binomials

Theorem (Akbary, W., 06)

Under the following conditions on `, r , e and s,

(r , s) = 1, (e, `) = 1, and ` is odd. (*)

the binomial P(x) = x r (xes + 1) is a permutation binomial of Fq
if (2r + es, `) = 1, 2s ≡ 1 (mod p) and {an} is s-periodic over
Fp.
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Permutation binomials and sequences

Permutation binomials

Theorem (Akbary, W., 06)

Let p be an odd prime and q = pm. Let ` be an odd positive
integer. Let p ≡ −1 (mod `) or p ≡ 1 (mod `) and ` | m. Under
the conditions (∗) on r , e and s, the binomial P(x) = x r (xes + 1)
is a permutation binomial of Fq if and only if (2r + es, `) = 1.

Why? g `−1
2

(x) splits over Fp[x ].

Let γj (1 ≤ j ≤ l−1
2 ) be roots of g `−1

2
(x) in Fp, we have γs

j ≡ 1

(mod p) for j = 1, · · · , `−1
2 .

The sequence {an} is always s-periodic.
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Permutation binomials and sequences

Case ` = 7

Theorem (Akbary, W., 05)
Let q − 1 = 7s and 1 ≤ e ≤ 6. Then P(x) = x r (xes + 1) is a
permutation binomial of Fq if and only if (r , s) = 1,
2s ≡ 1 (mod p), 2r + es 6≡ 0 (mod 7) and {an} satisfies one of
the following:
(a) as = a−s = 3 in Fp;
(b) a−cs−1 = −1 + α, a−cs = −1− α and a−cs+1 = 1 in Fp,
where c is the inverse of s + 2e5r modulo 7 and α2 + α + 2 = 0
in Fp.
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Permutation binomials and sequences

Case l=7

Corollary (Akbary, W., 05)

Let q − 1 = 7s, 1 ≤ e ≤ 6, and p be a prime with
(p

7

)
= −1.

Then P(x) = x r (1 + xes) is a permutation binomial of Fq if and
only if (r , s) = 1, 2s ≡ 1 (mod p) and 2r + es 6≡ 0 (mod 7).
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Compositional inverse polynomial of a PP

Open problem

Let P(x) = a0 + a1 + . . . aq−2xq−2 be a PP of Fq and
Q(x) = b0 + b1x + . . . bq−2xq−2 be the compositional inverse of
P(x) modulo xq − x .

Problem 10 (Mullen, 1993): Compute the coefficients of the
inverse polynomial of a permutation polynomial efficiently.
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Inverse polynomials of permutation binomials

Theorem (W. 2009)
Let p be odd prime and q = pm, ` ≥ 3 is odd, q − 1 = `s, and
(e, `) = 1. If P(x) = x r (xes + 1) is a permutation polynomial of
Fq and Q(x) = b0 + b1x + · · ·+ bq−2xq−2 is the inverse
polynomial of P(x) modulo xq − x, then at most ` nonzero
coefficients bk corresponding to k ≡ r−1 (mod s). Let
r̄ = r−1 mod s and nc = q − 1− cs − r̄ = (`− c)s − r̄ with
c = 0, · · · , `− 1. Then

bq−1−nc =
1
`

(2nc +

uc∑
j=0

t(uc)
j anc+j), (2)

where uc = 2(c + r r̄−1
s )eφ(`)−1 + cs + r̄ mod 2`, t(uc)

j is the
coefficient of x j of Dickson polynomial Duc (x) of the first kind,
and {an}∞n=0 is the generalized Lucas sequence of order `−1

2 .
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Inverse polynomials of permutation binomials

Idea
It is well known that∑

y∈Fq

yq−1−nQ(s) = −bn.

Since P(x) is a PP of Fq,

bn = −
∑
y∈Fq

yP(y)q−1−n =
1
`

`−1∑
t=0

ζ∗(ζ−et + 1)q−1−n.
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Inverse polynomials of permutation binomials

Remark
Equation (2) can be written as

bq−1−nc =
1
`

(
2s−r̄ + Duc ({anc})

)
.

The degree un is odd for any c.
Since gk ({anc}) = 0, we have Rm({anc}) = Dm({anc})
where Rm(x) is the remainder of Dm(x) divided by gk (x).
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Inverse polynomials of permutation binomials

Example: ` = 3

In this case, k = 1 and g1(x) = x − 1. So {an} is the constant
sequence 1,1, . . .. Moreover, R2(x) = −1 and R4(x) = −1
mean that R2({an}) = R4({an}) = −an = −1 is automatically
satisfied.
Hence x r (xes + 1) is PP of Fq iff (r , s) = 1, 2r + es 6≡ 0
(mod 3), and 2s ≡ 1 (mod p).
Furthermore, R1(x) = 1, R3(x) = −2, R5(x) = 1. Hence
bq−1−nc = 1

3(2−r̄ + Duc ({an})).

Duc ({anc}) =

{
anc = 1 if uc ≡ 1,5 (mod 6)
−2anc = −2 if uc ≡ 3 (mod 6)

bq−1−nc =

{ 1
3(2s−r̄ + 1) if uc ≡ 1,5 (mod 6)
1
3(2s−r̄ − 2) if uc ≡ 3 (mod 6)
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Inverse polynomials of permutation binomials

Example: ` = 5

k = 2, g1(x) = x2 − x − 1 and {an} is the Lucas sequence.
R2(x) = x − 1, R4(x) = −x , R6(x) = −x , R8(x) = x − 1.

Djc ({acs}) =

{
acs+1 − acs if jc ≡ 2,8 (mod 10)
−acs+1 if jc ≡ 4,6 (mod 10)

R1(x) = x , R3(x) = 1− x , R5(x) = −2, R7(x) = 1− x ,
R9(x) = x .

Duc ({anc}) =


anc+1 if uc ≡ 1,9 (mod 10)
anc − anc+1 if uc ≡ 3,7 (mod 10)
−2anc if uc ≡ 5 (mod 10)

bq−1−nc =


1
5(2nc + anc+1) if uc ≡ 1,9 (mod 10)
1
5(2nc − anc+1) if uc ≡ 3,7 (mod 10)
1
5(2nc − 2anc ) if uc ≡ 5 (mod 10)
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Inverse polynomials of permutation binomials

PPs of form x r (x
e(q−1)

5 + 1) and inverse PPs over F192

PP Inverse of PP
x + x73 10x + 10x73 + 10x145 + 9x217 + 9x289

x5 + x77 3x29 + 14x101 + 3x173 + 16x245 + 16x317

x7 + x79 5x31 + 5x103 + 10x175 + 2x247 + 10x319

x11 + x83 16x59 + 2x131 + 5x203 + 2x275 + 16x347

x13 + x85 5x61 + 18x133 + 18x205 + 5x277 + 7x349

x17 + x89 x89 + x305

x23 + x95 3x47 + 14x119 + 3x191 + 16x263 + 16x335

· · · · · ·
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Summary

Summary
Some connections between generalized Lucas sequences
and PPs (inverses)

Question
When is the inverse of x r (xes + 1) still a binomial for ` > 3?
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Thank you for your attention.

Happy birthday, Reza and IPM!
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