Exterior Algebras and Two Conjectures about Finite Abelian Groups

Qing Xiang joint work with Tao Feng and Zhi-Wei Sun

> University of Delaware Newark, DE 19716 xiang@math.udel.edu

IPM20, May 18, 2009

The Statement of the Conjecture

Snevily's Conjecture on Latin Transversals (1999).

Let G be a multiplicatively written abelian group of odd order, and let $A = \{a_1, \ldots, a_k\}$, $B = \{b_1, \ldots, b_k\}$ be two subsets of G of size k. Then there is a permutation $\pi \in S_k$ such that $a_1b_{\pi(1)}, \ldots, a_kb_{\pi(k)}$ are distinct.

Some Remarks

Remarks. (1) The condition that G has odd order is needed. Let |G| be even, g be an element of order 2, and let $A=\{1,g\}=B$. Then for $\pi=\mathrm{id}$, we have $a_1b_{\pi(1)}=a_2b_{\pi(2)}=1$, and for $\pi=(12)$, we have $a_1b_{\pi(1)}=a_2b_{\pi(2)}=g$.

(2) The conjecture first appeared in "The Cayley addition table of \mathbb{Z}_n " (Snevily), American Math. Monthly (106) 1999, 584–585. The whole Section 9.3 in the book "Additive Combinatorics" (Tao and Vu) is devoted to Snevily's conjecture.

Motivation

• Complete mappings

A complete mapping for a multiplicatively written group G is a bijection $\phi: G \to G$ such that the map $x \mapsto x \phi(x)$ is also a bijection.

• The Hall-Paige Conjecture (1955)

If G is a finite group and the Sylow 2-subgroups of G are either trivial or noncyclic, then G has a complete mapping.

Motivation, continued

Remark. If a finite group G has a complete mapping, then the Sylow 2-subgroups of G are either trivial or noncyclic.

Call a collection of k cells from a $k \times k$ matrix a *transversal* if no two of the k cells are on a line (row or column). A transversal is called *Latin* if no two of its cells contain the same symbol.

Motivation, continued

The multiplication table of any finite group G is a Latin square.

Let G be a finite group. Then the multiplication table of G has a Latin transversal if and only if G has a complete mapping.

Therefore, the Hall-Paige conjecture is about existence of Latin transversals in the multiplication table of a finite group.

Motivation, continued

Snevily's Conjecture (restated)

Let G be an abelian group of odd order. Then any $k \times k$ submatrix of the multiplication table of G has a Latin transversal.

Hall-Paige

The Hall-Paige Conjecture is proved.

- (1) Early work by Hall and Paige
- (2) A. B. Evans, Michael Aschbacher, F. Dalla Volta and N. Gavioli
- (3) Stewart Wilcox (preprint): Any minimal counterexample to the Hall-Paige conjecture must be a simple group. Furthermore, Wilcox showed that any minimal counterexample to the Hall-Paige conjecture must be a sporadic simple group.
- (4) A. B. Evans (J. Algebra, Jan. 2009), John Bray (preprint).

Known results on Snevily's conjecture

Theorem. (Alon, 2000) Let G be a cyclic group of prime order p. Let k < p be a positive integer. Let $A = \{a_1, a_2, \ldots, a_k\}$ be a k-subset of G and b_1, b_2, \ldots, b_k be (not necessarily distinct) elements of G. Then there is a permutation $\pi \in S_k$ such that $a_1b_{\pi(1)}, \ldots, a_kb_{\pi(k)}$ are distinct.

Remark. The proof uses the Combinatorial Nullstellensatz which is stated below.

Combinatorial Nullstellensatz

Theorem. (Combinatorial Nullstellensatz) Let F be an arbitrary field, let $P \in F[x_1, x_2, \ldots, x_n]$ be a polynomial of degree d which has a nonzero coefficient at $x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n}$ $(d_1 + d_2 + \cdots + d_n = d)$, and let S_1, S_2, \ldots, S_n be subsets of F such that $|S_i| > d_i$ for all $1 \le i \le n$. Then there exist $t_1 \in S_1, t_2 \in S_2, \ldots, t_n \in S_n$ such that $P(t_1, t_2, \ldots, t_n) \ne 0$.

Known results, continued

Theorem. (Dasgupta, G. Károlyi, O. Serra and B. Szegedy, 2001) Snevily's conjecture holds for cyclic groups of odd order.

Theorem. (Dasgupta, G. Károlyi, O. Serra and B. Szegedy, 2001) Let p be a prime and let α be a positive integer. Let G be the cyclic group $\mathbb{Z}_{p^{\alpha}}$ or the elementary abelian p-group \mathbb{Z}_{p}^{α} . Assume that $A = \{a_1, a_2, \ldots, a_k\}$ is a k-subset of G and b_1, b_2, \ldots, b_k are (not necessarily distinct) elements of G, where K < p. Then for some $\pi \in S_k$, $a_1b_{\pi(1)}, \ldots, a_kb_{\pi(k)}$ are distinct.

The DKSS conjecture

The DKSS Conjecture.

Let G be a finite abelian group with |G| > 1, and let p(G) be the smallest prime divisor of |G|. Let k < p(G) be a positive integer. Assume that $A = \{a_1, a_2, \ldots, a_k\}$ is a k-subset of G and b_1, b_2, \ldots, b_k are (not necessarily distinct) elements of G. Then there is a permutation $\pi \in S_k$ such that $a_1b_{\pi(1)}, \ldots, a_kb_{\pi(k)}$ are distinct.

Theorem 1. (F-S-X) The DKSS conjecture is true for all abelian p-groups.

That is: Let p be a prime. Assume that G is an abelian p-group, and k is a positive integer such that k < p. Let $A = \{a_1, \ldots, a_k\}$ be a k-subset of G, and b_1, b_2, \ldots, b_k be (not necessarily distinct) elements of G. Then \exists a $\pi \in S_k$ such that $a_1b_{\pi(1)}, \ldots, a_kb_{\pi(k)}$ are distinct.

Theorem 1 can be slightly generalized.

Definition. Let k and n > 1 be positive integers. We say that n is k-large if the smallest prime divisor of n is greater than k and any other prime divisor of n is greater than k!.

Theorem 2. (F-S-X) Let G be a finite abelian group. Let $A = \{a_1, \ldots, a_k\}$ be a k-subset of G, and b_1, \ldots, b_k be (not necessarily distinct) elements of G. Suppose that either A or $B = \{b_1, \ldots, b_k\}$ is contained a subgroup H of G and |H| is k-large. Then there exists a permutation $\pi \in S_k$ such that $a_1b_{\pi(1)}, \ldots, a_kb_{\pi(k)}$ are distinct.

Note that if k is a positive integer and p is a prime such that p > k, then for every integer $\alpha \ge 1$, p^{α} is certainly k-large. Hence Theorem 1 is a special case of Theorem 2.

Exterior powers

Let F be any field, and let V be an n-dimensional vector space over F.

The exterior power $\bigwedge^k V$ can be constructed as the quotient space of $V^{\otimes k}$ (the k-th tensor power) by the subspace generated by all those $v_1 \otimes v_2 \otimes \cdots \otimes v_k$ with two of the v_i equal. We naturally identify $\bigwedge^0 V = F$ and $\bigwedge^1 V = V$. The *exterior algebra* of V, denoted by E(V), is the algebra $\bigoplus_{k \geq 0} \bigwedge^k (V)$, with respect to the wedge product ' \bigwedge '.

Note that $\dim(\bigwedge^k V) = \binom{n}{k}$ and $\dim(E(V)) = 2^n$.

Skew derivations

A skew derivation on E(V) is an F-homomorphism $\Delta: E(V) \to E(V)$ such that

$$\Delta(xy) = (\Delta x)y + (-1)^k x(\Delta y),$$

for all $x \in \bigwedge^k V$ and $y \in E(V)$.

Lemma. Let G be a finite abelian group. Let \hat{G} denote the group of characters from G to $K^* = K \setminus \{0\}$, where K is a field containing a primitive |G|-th root of unity. Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in G$ and $\chi_1, \ldots, \chi_k \in \hat{G}$. Let

$$M_A = (\chi_i(a_j))_{1 \leq i,j \leq k}, \quad M_B = (\chi_i(b_j))_{1 \leq i,j \leq k}.$$

Suppose that both $\det(M_A)$ and $\operatorname{per}(M_B)$ are nonzero. Then there is $\pi \in S_k$ such that the products $a_1b_{\pi(1)},\ldots,a_kb_{\pi(k)}$ are distinct.

V = K[G]: |G|-dimensional vector space over K.

For any $\pi \in S_k$ we set

$$Q_{\pi}:=a_1b_{\pi(1)}\wedge\cdots\wedge a_kb_{\pi(k)}\in\bigwedge^kV.$$

Goal. Prove that $\exists \pi \in S_k$ such that $Q_{\pi} \neq 0$.

Consider $\sum_{\pi \in S_k} Q_{\pi}$. If one can show that this sum is nonzero, then there exists one summand which is nonzero.

Apply skew derivations Δ_{χ_i} , $(\chi_i \in \hat{G})$, $1 \leq i \leq k$, to the above sum, we get

$$(\Delta_{\chi_1} \circ \cdots \circ \Delta_{\chi_k}) \bigg(\sum_{\pi \in S} Q_\pi \bigg) = (-1)^{k(k-1)/2} \det(M_A) \operatorname{per}(M_B).$$

Using this lemma, together with some (elementary) algebraic number theory, we can prove Theorem 1 (F-S-X) mentioned above.

Proof of Theorem 1. Let $|G|=p^{\alpha}$, and $K=\mathbb{Q}(\xi_{p^{\alpha}})$, where $\xi_{p^{\alpha}}$ is a complex primitive p^{α} -th of unity. Then one can certainly find complex characters $\chi_1,\chi_2,\ldots,\chi_k$ such that $\det(M_A)\neq 0$ (by orthogonality of characters). Now using the same $\chi_1,\chi_2,\ldots,\chi_k$ to construct M_B . We need to show that $\operatorname{Per}(M_B)\neq 0$.

Let us consider $\operatorname{Per}(M_B)$ modulo the **prime** ideal $(1-\xi_{\rho^{\alpha}})$. We have

$$\operatorname{Per}(M_B) \equiv k! \pmod{(1 - \xi_{p^{\alpha}})}.$$

Note that $\mathbb{Z}[\xi_{p^{\alpha}}]/(1-\xi_{p^{\alpha}})$ is isomorphic to the finite field $\mathbb{Z}/p\mathbb{Z}$. Since k < p, we see that k! is nonzero in $\mathbb{Z}/p\mathbb{Z}$. Hence $\operatorname{Per}(M_B) \neq 0$.

A new conjecture

Conjecture. (F-S-X) Let G be a finite abelian group, and let $A = \{a_1, \ldots, a_k\}$, $B = \{b_1, \ldots, b_k\}$ be two k-subsets of G. Let K be an arbitrary field containing an element of multiplicative order |G|, and let \hat{G} be the character group of all group homomorphisms from G to $K^* = K \setminus \{0\}$. Then there are $\chi_1, \ldots, \chi_k \in \hat{G}$ such that $\det(\chi_i(a_j))_{1 \le i,j \le k}$ and $\det(\chi_i(b_j))_{1 \le i,j \le k}$ are both nonzero.

Remarks. (1). The validity of this conjecture implies that of the Snevily conjecture. This can be seen by using characters from G to K^* , where K is a field of characteristic 2.

2. The conjecture holds when G is cyclic (Vandermonde determinants). Therefore we have a new proof of the DKSS theorem stating that the Snevily's conjecture is true for all odd order cyclic groups.