EXTENDED ABSTRACT

Let *K* be a field, $S = K[x_1, ..., x_n]$ the polynomial ring in *n* variables and *M* a finitely generated \mathbb{Z}^n -graded *S*-module. Let $m \in M_a$ be a homogeneous element and *Z* a subset of $\{x_1, ..., x_n\}$. We denote by mK[Z] the *K*-subspace of *M* whose basis consists of all homogeneous elements of the form *mv* where *v* is a monomial in K[Z]. The *K*-subspace $mK[Z] \subset S$ is called a *Stanley space* of dimension |Z| if mK[Z] is a free K[Z]-module.

A decomposition \mathcal{D} of M as a finite direct sum of Stanley spaces is called a *Stanley decomposition* of M. The minimal dimension of a Stanley space in the decomposition \mathcal{D} is called the *Stanley depth* of \mathcal{D} , denoted sdepth(\mathcal{D}).

We set sdepth(M) = max{sdepth(\mathcal{D}): \mathcal{D} is a Stanley decomposition of M}, and call this number the *Stanley depth* of M. In [5, Conjecture 5.1] Stanley conjectured the inequality sdepth(M) \geq depth(M).

In this talk *M* is always a finitely generated \mathbb{Z}^n graded *S*-module with the property that $\dim_K(M_a) \leq 1$ for each $a \in \mathbb{Z}^n$. We will show that the Stanley depth of *M* can be determined in a finite number of steps. This is an easy generalization of the same result by Herzog, Vladoiu and Zheng [2] for \mathbb{Z}^n -graded modules of the form I/J where $J \subset I$ are monomial ideals in *S*.

We define a natural partial order on \mathbb{Z}^n as follows: $a \le b$ if and only if $a(i) \le b(i)$ for i = 1, ..., n. Observe that \mathbb{Z}^n with the partial order introduced is a distributive lattice with meet $a \land b$ and join $a \lor b$ defined as follows: $(a \land b)(i) = \min\{a(i), b(i)\}$ and $(a \lor b)(i) = \max\{a(i), b(i)\}$. We also denote by ε_i the *j*th canonical unit vector in \mathbb{Z}^n .

Suppose m_1, \ldots, m_t is a minimal set of generators of M with deg $m_i = a_i$. We choose $g \in \mathbb{Z}^n$ such that $a_i \leq g$ for all i, and let P_M^g be the set of all $c \in \mathbb{Z}^n$ with $c \leq g$ and such that $a_i \leq c$ for some i. The set P_M^g viewed as a subposet of \mathbb{Z}^n is a finite poset. This poset is called the *characteristic poset* of M with respect to g. There is a natural choice for g, namely the join of all the a_i . For this g, the poset P_M^g has the least number of elements, and we denote it simply by P_M . Note that if Δ is a simplicial complex on the vertex set [n], then $P_{S/I_{\Delta}}$ is just the face poset of Δ .

Remark 0.1. Notice that for each $a \in P_M^g$ there is a unique homogenous element $m \in M$ such that deg m = a. We denote this unique element by m_a .

Let *P* be a poset and $a, b \in P$. We set $[a,b] = \{c \in P : a \le c \le b\}$ and call [a,b] an *interval*. Of course, $[a,b] \neq \emptyset$ if and only if $a \le b$. Suppose *P* is a finite poset. A *partition* of *P* is a disjoint union

$$\mathscr{P}: P = \bigcup_{i=1}^{\prime} [a_i, b_i]$$

of intervals.

We show that each partition of P_M^g gives rise to a Stanley decomposition of M. In order to describe the Stanley decomposition of M coming from a partition of P_M^g we need the following notation: for each $b \in P_M^g$, we set $Z_b = \{x_j : b(j) = g(j)\}$. We also introduce the function

$$\rho: P_M^g \to \mathbb{Z}_{\geq 0}, \quad c \mapsto \rho(c),$$

where $\rho(c) = |\{j: c(j) = g(j)\}| = |Z_c|$.

The following theorem was proved in [2] for the case that *M* is an \mathbb{N}^n -graded *S* module of the form J/I, where *I* and *J* are monomial ideals.

Theorem 0.2.

(a) Let $\mathscr{P}: P_M^g = \bigcup_{i=1}^r [c_i, d_i]$ be a partition of P_M^g . Then

$$\mathscr{D}(\mathscr{P}): M = \bigoplus_{i=1}^{r} (\bigoplus_{c} m_{c} K[Z_{d_{i}}])$$

is a Stanley decomposition of M, where m_c is the unique homogenous element in P_M^g of degree c and the inner direct sum is taken over all $c \in [c_i, d_i]$ for which $c(j) = c_i(j)$ for all j with $x_j \in Z_{d_i}$. Moreover, sdepth $\mathcal{D}(\mathcal{P}) = \min\{\rho(d_i): i = 1, ..., r\}$.

(b) Let \mathscr{D} be a Stanley decomposition of M. Then, there exists a partition \mathscr{P} of P_M^g such that

sdepth $\mathscr{D}(\mathscr{P}) \geq \text{sdepth } \mathscr{D}.$

As an immediate consequence we have the following:

Corollary 0.3. Let M be a finitely generated \mathbb{Z}^n graded S-module. Then

sdepth $M = \max\{ \text{sdepth } \mathcal{D}(\mathcal{P}) : \mathcal{P} \text{ is a partition of } P_M^g \}.$

In particular, there exists a partition $\mathscr{P}: P_M^g = \bigcup_{i=1}^t [c_i, d_i]$ of P_M^g such that

sdepth
$$M = min\{\rho(d_i): i = 1, \dots, t\}$$

Let *M* be a finitely generated \mathbb{Z}^n graded *S*-module. A chain $\mathscr{F}: (0) = M_0 \subset M_1 \subset \cdots \subset M_r = M$ of submodules of *M* with the property $M_i/M_{i-1} \cong S/P_i(-a_i)$ for $i = 1, \cdots, r$ is called a prime filtration of *M*. It is was shown in [3] that if \mathscr{F} is a prime filtration of *M*, then

$$\mathscr{D}(\mathscr{F}) = \bigoplus_{i=1}^r m_{a_i} K[Z_i],$$

is a Stanley decomposition of M, where $Z_i = \{x_j : x_j \notin P_i\}$ and m_{a_i} is a homogenous element in M of degree a_i with the property that $Ann_S(m_{a_i}) = P_i$. It is easy to see that if \mathscr{F} is a prime filtration of M, then

$$\dim(M) = \max\{\dim(S/P_i): i = 1, \cdots, r\}.$$

In [4] the author classified all Stanley decomposition \mathscr{D} of S/I which is induced by a prime a filtration. In [2] the same result was shown for \mathbb{Z}^n graded *S*- modules.

Proposition 0.4. [2] Let M be a finitely generated \mathbb{Z}^n -graded S-module and $\mathscr{D} : M = \bigoplus_{i=1}^m u_i K[Z_i]$ a Stanley decomposition of M. Then the following conditions are equivalent:

(a) \mathscr{D} is induced by a prime filtration.

(b) After a suitable relabeling of the summands in \mathscr{D} we have $M_j = \bigoplus_{i=1}^j u_i K[Z_i]$ is a \mathbb{Z}^n -graded submodule of M for j = 1, ..., m.

We shall need the following:

Theorem 0.5. Let M be a \mathbb{Z}^n -graded S module, and Let $\mathscr{P}: P_M^g = \bigcup_{i=1}^r [c_i, d_i]$ be a partition of P_M^g with the property that for all j the union $\bigcup_{i=1}^j [c_i, d_i]$ is a poset ideal of P_M^g . Then $\mathscr{D}(\mathscr{P})$ is induced by a prime filtration.

Theorem 0.5 can be used to compute the Krull dimension of M.

Corollary 0.6. Let M be a \mathbb{Z}^n -graded S module. Then dim $M = \max\{\rho(c): c \in P_M^g\}$.

References

- [1] J. Herzog, A. Soleyman Jahan, X. Zheng, Skeltons of monomial ideals, to apear in Mathematische Nachriechten.
- [2] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Alg.
- [3] A. Soleyman-Jahan, Stanley decompositions of squarefree modules and Alexander duality, Manuscripat mathematica,
- [4] A. Soleyman Jahan, Prime filtrations of monomial ideals and polarizations. J. Algebra, 312 (2007), 1011–1032.
- [5] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68, (1982), 175–193.

ALI SOLEYMAN JAHAN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KURDISTAN *E-mail address*: solymanjahan@gmail.com