Some generalizations of Cohen-Macaulay simplicial complexes

Rahim Zaare-Nahandi

School of Mathematics, Statistics and Computer Science

University of Tehran

P.O. Box 14155-6455, Tehran, Iran

E-mail: rahimzn@ut.ac.ir

Abstract

- H. Haghighi, S. Yassemi and R. Zaare-Nahandi Let Δ be a simplicial complex on a vertex set V.
- a) Following Terai and Yanagawa, for an integer $r \geq 2$, Δ is said to be S_r if $k[\Delta]$, the Stanley-Reisner ring of Δ , satisfies the S_r condition of Serre. We say that Δ is sequentially S_r if $k[\Delta]$ is sequentially S_r is the sense of Stanley. It appears that Δ is sequentially S_r if and only if its pure skeletons are S_r . This generalizes a result of Duwal on sequentially Cohen-Macaulay complexes. On the other hand, Δ is sequentially S_r if and only if the ideal of the Alexander dual of Δ is componentwise linear in the first r steps. This generalizes a result of Terai and Yanagawa on S_r complexes, and a result of Herzog and Hibi on sequentially Cohen-Macaulay complexes.
- b) For a nonnegative integer t, we say that Δ is CM_t if for $\sigma \in \Delta$ with $\#\sigma \geq t$, $\mathrm{lk}_{\Delta}(\sigma)$ is Cohen-Macaulay. For positive integer k, Δ is called $k\text{-}\mathrm{CM}_t$ if for and $W \subset V$ with #W < k, the complex $\Delta_{V \setminus W}$ is CM_t . A CM_0 complex is the same as a Cohen-Macaulay complex and a CM_1 complex is the same as a Buchsbaum complex. We give some homological characterization for CM_t and k- CM_t complexes. We show that Δ is $k\text{-}\mathrm{CM}_t$ if $k\text{-}\mathrm{CM}_{t-1}$ for any nonempty $\sigma \in \Delta$. Furthermore, if Δ is $k\text{-}\mathrm{CM}_t$, then the submaximal skeleton of Δ is $(k+1)\text{-}\mathrm{CM}_t$. This generalizes a result of Hibi on Cohen-Macaulay complexes and a result of Miyazaki on Buchsbaum complexes.