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Background

Short memory parametric time series models (having bounded
spectral density or summable autocovariances), such as
stationary and invertible ARMAs, can be estimated by
several, asymptotically equivalent, "Gaussian" or "Whit-
tle" methods.

Asymptotic theory for the estimates (consistency, asymp-
totic normality with

p
n rate, and maybe e¢ ciency) was

long-ago established.

"Long memory time series" often refers to stationary
and invertible ones, with spectral density diverging (as
a power law) at zero frequency, or autocorrelations being
non-summable.

This divergence makes establishing asymptotic normality
harder.



But due essentially to the way the exploding periodogram
and spectral density compensate for one another, "Gaussian"
estimates have the same desirable asymptotic properties
as in the short memory case.

Nonstationary processes such as unit root ones a fortiori
have long memory.

Fractional models can cover stationary and nonstationary
processes.

They can also cover non-invertible processes.

This entails a "memory parameter" that can take on any
real value.

We would like a method and theory of estimation that
is agnostic to the location of the memory parameter, i.e.
does not require knowledge of whether the process is sta-
tionary or nonstationary, invertible or non-invertible.
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Fractional model

Whittle estimates of parameters in univariate stationary
long memory or fractional processes have been shown to
be
p
n-consistent and asymptotically normal, for sample

size n.

In many time series, e.g. macroeconomic ones, the pos-
sibility of non-stationarity must be taken seriously.

Unit root models occupy a similarly specialized position
relative to fractionally non-stationary processes as short
memory ones do relative to fractional stationary ones.



xt = �
��0 fut1(t > 0)g ; t = 0;�1; :::;

ut = �(L;'0)"t; t = 0;�1; :::::

L is the lag operator; � = 1� L is the di¤erence oper-
ator;

(1� L)�� =
1X
j=0

aj(�)L
j; aj(�) =

�(j + �)

�(�)�(j + 1)
;

1(:) is the indicator function; �0 is an unknown real num-
ber and '0 is an unknown p� 1 real vector;

�(s;') =
1X
j=0

�j(')s
j,

where for all '; �0(') = 1, �(s;'): R1�Rp is contin-
uous in s and j�(s;')j 6= 0, jsj = 1; "t is a zero-mean
unobservable white noise sequence.



� describes parametric short memory autocorrelation.

E.g. �(s;') is a rational function of s, whose denomi-
nator and numerator are polynomials in s of degrees p1
and p2 respectively, so ut is ARMA(p1; p2), and xt is
FARIMA(p1; �0; p2).

Due to the truncation xt is actually non-stationary for all
�0.

But for �0 < 1=2; ���0ut is stationary and xt is �as-
ymptotically stationary�.

For �0 � 1=2, xt is non-stationary in a more substantial
sense, in particular Var(xt) diverges as t ! 1; so the
truncation is needed to avoid explosion.

For �0 = 1 xt has a unit root.



We wish to estimate � 0 = (�0;'00)
0 from xt, t = 1; :::; n.

For any � = (�;'0)0, de�ne

"t(� ) = �
���1(L;')xt; t � 1;

noting that xt = 0, t � 0.

De�ne

b� = arg min
�2T

Rn(� );

where

Rn(� ) =
1

n

nP
t=1

"2t (� )

and T = [51;52] � 	, where 51 < 52, and 	 is a
compact subset of Rp.



b� is sometimes termed a �conditional sum of squares�es-
timate (�truncated sum of squares�might be more suit-
able).

It has the anticipated advantage of having the same limit
distribution as the MLE of � 0 under Gaussianity with

p
n

rate, and thereby being asymptotically e¢ cient (though
we do not assume Gaussianity).

It has been used in estimation of non-fractional ARMA
models (when �0 is a given integer), and in stationary
and non-stationary FARIMA models.

There is a large gap in inferential theory when the possi-
bility of non-stationarity (�0 � 1=2) and/or non-invertibility
(�0 � �1=2) is to be allowed.

Rn(� ) doesn´t converge uniformly on T that entails a
�-interval, containing �0, of length greater than 1/2, so
usual consistency proof doesn´t work.



Consistency is used in CLT.

For invertible processes, Velasco and R established consis-
tency, and thence asymptotic normality, of an alternative
estimate of � 0, under an alternative de�nition of frac-
tional nonstationarity and using tapering and �skipping�
of Fourier frequencies, achieving a CLT with

p
n rate but

with an in�ated variance.



Consistency

A1. (i)

j� (s;')j 6= j� (s;'0)j ;

for all' 6= '0, ' 2 	, on a set S � fs : jsj = 1g
of positive measure;

(ii) for all ', �
�
ei�;'

�
is di¤erentiable in � with

derivative in Lip (&), & > 1=2;

(iii) for all �, �
�
ei�;'

�
is continuous in ';

(iv) for all ' 2 	;

j� (s;')j 6= 0; jsj = 1:

Condition (i) provides identi�cation while (ii) and (iv)
ensure that ut is an I (0) process (e.g. a stationary and
invertible ARMA process).



A2. The "t are stationary and ergodic with �nite fourth
moment, and

E ("tj Ft�1) = 0; E
�
"2t

���Ft�1� = �20; a.s.,
where Ft is the �-�eld of events generated by "s,
s � t, and conditional (on Ft�1) third and fourth
moments of "t equal the corresponding unconditional
moments.

A3. For all � 2 [51;52], ' 2 	 such that �0 � � >
1=2, there exists a random variable D (� ) > 0 a.s.
such that n�2(�0��)

Xn

t=1
"2t (� ) converges weakly

to D (� ) in the space D [0; 1] :

A2 avoids requiring independence or identity of distribu-
tion of "t, but rules out conditional heteroskedasticity.

A3 can be checked under a higher-moment type condi-
tion.



Theorem 1 Let A1-A3 hold. Then as n!1;

b� !p � 0:

The proof re�ects the fact that Rn(� ) converges in prob-
ability to a well-behaved function when � > �0 � 1

2, and
diverges when � < �0 � 1

2, while the need to establish
uniform convergence and behaviour in a neighbourhood
of � = �0 � 1

2 requires additional special treatment.

We split the admissible �-interval [51;52] into four dis-
joint intervals

I1 =
�
51; �0 �

1

2
� �

�
; I2 =

�
�0 �

1

2
� �; �0 �

1

2

�
;

I3 =
�
�0 �

1

2
; �0 �5

�
; I4 = (�0 �5;52];

for arbitrarily small positive � and for 5 � (1=3; 12):



Asymptotic normality

A4. (i)

� 0 2 int T ;

(ii) for all �, �
�
ei�;'

�
is twice continuously di¤er-

entiable in ' on a closed neighbourhoodN� ('0)
of radius 0 < � < 1=2 about '0;

(iii) the matrix

A =

 
�2=6 �P1j=1 b0j ('0) =j

�P1j=1 bj ('0) =j P1
j=1 bj ('0)b

0
j ('0)

!
is non-singular, where

bj ('0) =
j�1X
k=0

�k ('0)
@�j�k ('0)

@'
;

��1 (s;') =
1X
j=0

�j (') s
j:

Again, this holds for FARIMAs.



Theorem 2 Let A1-A4 hold. Then as n!1;
p
n(b� � � 0)!d N(0;A

�1):



Multivariate extension

When observations on several related time series are avail-
able joint modelling can achieve e¢ ciency gains.

Consider a vector xt = (x1t; :::; xrt)0 given by

xt = �
�1
0 fut1 (t > 0)g , t = 0;�1; :::;

where ut = (u1t; :::; urt)
0,

ut = � (L;'0) "t, t = 0;�1; :::;

in which "t = ("1t; :::; "rt)
0, '0 is (as in the univariate

case) a p� 1 vector of short-memory parameters,

�(s;') =
1X
j=0

�j(')s
j, �0(') = Ir for all ';

and

�0 = diag
�
��01; ::::;��0r

�
;

where the memory parameters �0i are unknown real num-
bers.



In general, all �0i can be distinct but for the sake of
parsimony we allow for the possibility that they are known
to lie in a set of dimension q < r.

For example, perhaps as a consequence of pre-testing, we
might believe some or all the �0i are equal, and imposing
this restriction in the estimation could further improve
e¢ ciency.

Introduce known functions �i = �i(�), i = 1; :::; r, of
q � 1 vector �, such that for some �0 we have �0i =
�i(�0), i = 1; :::; r.

Denote � = (�0;'0)0 and de�ne

"t(� ) = �
�1(L;')� (�)xt; t � 1;

where � (�) = diag
�
��1; ::::;��r

�
.



Gaussian likelihood considerations suggest the objective
function

R�n(� ) = det f�n(� )g ;

where

�n(� ) =
1

n

nP
t=1

"t(� )"
0
t(� );

assuming that no prior restrictions link � 0 with the co-
variance matrix of "t.

Unfortunately our consistency proof for the univariate
case does not straightforwardly extend to an estimate
minimizing R�n(� ), at least if q > 1.

Also R�n(� ) is liable to pose a severe computational chal-
lenge since p is liable to be larger in the multivariate case
and q may exceed 1; it may be di¢ cult to locate an ap-
proximate minimum as a preliminary to iteration.



We avoid both these problems by taking a single Newton
step from an initial

p
n-consistent estimate e� . De�ning

Hn (� ) =
1

n

nX
t=1

 
@"t (� )

@� 0

!0
��1n (� )

@"t (� )

@� 0
;

hn (� ) =
1

n

nX
t=1

 
@"t (� )

@� 0

!0
��1n (� ) "t (� ) ;

we consider the estimate

b� = e� �H�1n (e� )hn(e� ):



A5. (i) For all ', �
�
ei�;'

�
is di¤erentiable in � with

derivative in Lip (&), & > 1=2;

(ii) for all ';

det f� (s;')g 6= 0; jsj = 1;

(iii) the "t are stationary and ergodic with �nite
fourth moment,

E ("tj Ft�1) = 0; E
�
"t"

0
t

���Ft�1� = �0
almost surely, where �0 is positive de�nite, Ft is
the �-�eld of events generated by "s, s � t, and
conditional (on Ft�1) third and fourth moments
and cross-moments of elements of "t equal the
corresponding unconditional moments;

(iv) for all �, �
�
ei�;'

�
is twice continuously dif-

ferentiable in' on a closed neighbourhoodN� ('0)
of radius 0 < � < 1=2 about '0;



(v) the matrix B having (i; j)th element

1X
k=1

tr

(�
d
(i)
k ('0)

�0
��10 d

(j)
k ('0)�0

)

is non-singular, where d(i)k ('0) is

�@�i (�0)
@�i

kX
l=1

1

l

k�lX
m=0

�
(i)
m ('0)�k�l�m ('0) ;

for 1 � i � r; and
kX
l=1

@�l ('0)

@'i
�k�l ('0) ; r + 1 � i � r + p;

for r+1 � i � r+ p; the �j (') being coe¢ -
cients in the expansion

��1 (s;') = � (s;') =
1X
j=0

�j (') s
j;

where �(i)m ('0) is an r � r matrix whose i-th
column is the i-th column of �i ('0) and whose
other elements are all zero;



(vi) �i (�) is twice continuously di¤erentiable in �,
for i = 1; :::; r;

(vii) e� is a pn-consistent estimate of � 0:
Theorem 3 Let A5 hold. Then as n!1

p
n(b� � � 0)!d N(0;B

�1):



Finite-sample performance

We used data generated from a FARIMA(1; �0; 0); for
8 stationary, nonstationary, invertible and non-invertible
�0; and 3 AR coe¢ cients '0, and n = 64; 128; 256:

We compared our estimate b� = (b�; b')0 one, b�W =

(b�W ; b'W )0; that "cheats" by carrying out the correct
degree of integer-di¤erencing needed to shift the process
to the stationary/invertible region, estimates the memory
and AR parameters from the �ltered sequence, then adds
to or subtracts from the memory estimate the appropriate
integer.

With '0 = �0:5; b� was the more biased, but with '0 =
0; b�W was the more biased.

In the great majority of cases, b� was the more precise.
In the great majority of cases, b' was both less biased and
more precise than b'W :



Empirical examples

US Quarterly income and consumption 1947Q1-1981Q2
(n = 138)

Evidence of unit root previously found.

For each series, we �rst estimated �0 semiparametrically,
then �ltered accordingly, then applied Box-Jenkins-type
procedures to identify ARMA orders.

Then for the resulting FARIMAs we estimated our b� from
the original data.

We then computed t-ratios, and applying our asymptotic
theory, strongly rejected �0 = 1 for both series.



Further comments and extensions

Our univariate and multivariate structures cover a wide
range of parametric models for stationary and nonstation-
ary time series, with memory parameters allowed to lie in
a set that can be arbitrarily large.

Unit root series are a special case, but unlike in the bulk
of the large literature on these models we do not have to
assume knowledge that memory parameters are 1.

As the nondiagonal structure of A and B suggests, there
is e¢ ciency loss in estimating '0 if memory parameters
are unknown, but on the other hand if these are misspec-
i�ed '0 will in general be inconsistently estimated.

Our limit distribution theory can be used to test hypothe-
ses on the memory and other parameters, after straight-
forwardly forming consistent estimates of A or B.



Our multivariate model does not cover fractionally coin-
tegrated systems because �0 is required to be positive
de�nite.

On the other hand our theory for univariate estimation
should cover estimation of individual memory parameters
of observations.

Moreover, again on an individual basis, it should be pos-
sible to derive analogous properties of estimates of mem-
ory parameters of cointegrating errors based on residuals
that use simple estimates of cointegrating vectors, such
as least squares.

In a more standard regression setting, for example with
deterministic regressors such as polynomial functions of
time, it should be possible to extend our theory for uni-
variate and multivariate models to residual-based esti-
mates of memory parameters of errors.

Nonstationary fractional series can be de�ned in many
ways.



Our de�nition is a leading one in the literature, and has
been termed �Type II�.

Another popular one is �Type I�: it seems likely that the
asymptotic theory can also be established in a �Type I�
setting.


