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1. Evidence of heavy tails in real-life data

1.1. Heavy tails in finance.
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Figure 1. Plot of 9558 S&P500 daily log-returns from January 2, 1953, to December 31, 1990. The
year marks indicate the beginning of the calendar year.
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Figure 2. Left: Density plot of the S&P500 data. The limits on the x-axis indicate the range of the
data. QQ-plot of the S&P500 data against the normal distribution.
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Figure 3. Hill plot (dotted line) for the S&P500 data with 95% asymptotic confidence bounds. The
Hill estimator approximates the tail index α in the model P (X1 > x) ∼ c x−α as a function of
the m upper order statistics in the return sample.
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Figure 4. Plot of the ratio Tn(p) = maxi=1,...,n |Xi|
p/(|X1|

p + · · ·+ |Xn|
p) for the S&P500 data

for various values of p. If E|X1|
p < ∞ and the data came from a stationary ergodic model, the

ratio should converge to zero a.s., by virtue of the strong law of large numbers.
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Figure 5. Plot of the ratio Tn(p) = maxi=1,...,n |Xi|
p/(|X1|

p + · · · + |Xn|
p) for iid simulated

Cauchy variables with tail P (|X| > x) ∼ c x−1 and p = 0.7, 0.9, 1.1, 1.3
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1.2. Heavy tails in insurance.
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Figure 6. Danish fire insurance data.
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Figure 7. Histogram of the logarithmic Danish fire insurance data.
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Figure 8. Empirical mean excess function of the Danish fire insurance data.
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1.3. Heavy tails in teletraffic.

n

T
e
le

tr
a
ff
ic

 D
a
ta

0 5000 10000 15000

0
1

2
3

4
5

n

T
e
le

tr
a
ff
ic

 D
a
ta

350 400 450 500 550

0
0
.1

0
.2

0
.3

0
.4

Figure 9. Time series of transmission durations (BU data).
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Figure 10. Mice and elephants plots (S. Marron).
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2. Concepts of heavy-tailed distributions

2.1. Long-tailed distributions. A positive random variable and its

distribution2 F with tail F = 1− F are long-tailed (see Embrechts et al.

(1997)) if

F (x− y)

F (x)
→ 1 , x→∞ , y ∈ R .(2.1)

•Notice that

P (X > x+ y | X > x)→ 1 , x→∞ , y > 0 .

• The notion is inconvenient since the class of long-tailed

distributions is too large.

2All distributions are supposed to have infinite support.
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• (2.1) is equivalent to slow variation of L(x) = F (log x), i.e.

L(cx)

L(x)
→ 1 , x→∞ , c > 0 .

This means that F (x) = L(ex).

•A slowly varying function has Karamata representation, see

Bingham et al. (1987)

L(x) = c(x) exp

{

−

∫ x

z

ε(t)

t
dt

}

, x ≥ z ,

for some functions ε(t)→ 0 and c(t)→ c > 0 as t→∞.

• It satisfies for any δ > 0 and sufficiently large x

x−δ ≤ L(x) ≤ xδ .
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• It is reasonable to define a heavy-tailed/light-tailed

distribution in relation to some probabilistic structure and to

study phase transitions of different behaviors of this structure

when crossing borderlines.
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2.2. Subexponential distributions.

•A positive random variable X and its distribution F are

subexponential if for iid copies Xi of X and any (some) n ≥ 2,

with Sn = X1 + · · · +Xn, Mn = max(X1, . . . , Xn),

P (Sn > x)

P (Mn > x)
∼
P (Sn > x)

nF (x)
→ 1 , x→∞ .

• Subexponential distributions are long-tailed, see EKM, p. 41

• Subexponential distributions do not have finite moment

generating function. (Exponential moments do not exist.) See

EKM, p. 42
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• Examples of subexponential distributions: regularly varying

distributions (power law tails), log-normal, heavy-tailed

Weibull F (x) = e−x
τ
, τ ∈ (0, 1), F (x) = e−x/ logγ(x), γ > 0.

• Examples of non-subexponential distributions: exponential,

gamma, (truncated) normal, any distribution with finite upper

endpoint.

• Subexponential distributions are considered as natural

heavy-tailed distributions in the context of insurance

mathematics, queuing, storage, dam, renewal theory.
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• There one is interested in the tail behavior of a random walk

(SN(t)) with iid step sizes Xi, independent of the counting

process N . For a fixed t > 0, with pn = P (N(t) = n),

P (SN(t) > x) =
∞
∑

n=1

pnP (Sn > x) .

• If Xi is subexponential, then P (Sn > x)/F (x) ≤ K(ε) (1 + ε)n.

See EKM p. 41.

•Hence if EehN(t) <∞ for some h > 0,

P (SN(t) > x)

F (x)
=
∞
∑

n=1

pn
P (Sn > x)

F (x)
∼
∞
∑

n=1

pn n = EN(t) .

• The total claim amount SN(t) of an insurance portfolio at a

high threshold: P (SN(t) > x) ∼ EN(t)F (x).
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• If N is homogeneous Poisson with intensity λ > 0, the ruin

probability of the portfolio is given by

ψ(x) = P

(

inf
t≥0

(x+ c t− SN(t)) < 0

)

= ρ(1 + ρ)−1
∞
∑

n=1

(1 + ρ)−n P (S∗n > x) ,

where ρ = c/(λEX)− 1 is assumed positive and (S∗n) is a

random walk with iid positive step sizes with distribution

F∗(x) = (EX)−1
∫ x

0 F (t) dt.

• TFAE EKM, p. 581 (1) F∗ is subexponential, (2) 1− ψ is

subexponential, (3) the following relation holds

ψ(x)

F ∗(x)
∼ ρ(1 + ρ)−1

∞
∑

n=1

(1 + ρ)−n n = ρ−1 .
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Figure 11. Ruin in an insurance portfolio.
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• In contrast, if F is light-tailed in the sense that EehX <∞ in

some neighborhood of the origin, then ψ(x) decays

exponentially fast as x→∞. Cramér (1930)

• These results describe a phase transition of different behaviors

of the ruin probability when passing from light-tailed to

heavy-tailed distributions.
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Figure 12. Ruin in a insurance portfolio. Light tails (left) and heavy tails (right).
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2.3. Regularly varying distributions.

•A positive measurable function on (0,∞) is regularly varying

with index ρ ∈ R if f(x) = L(x)xρ for some slowly varying

function L. Bingham et al. (1987)

•A positive function f on (0,∞) is regularly varying if and only

if as x→∞,
f(cx)

f(x)
→ cρ , c > 0.

•A positive random variable X and its distribution F are

regularly varying with index α > 0 if for some slowly varying

function L

F (x) = P (X > x) =
L(x)

xα
, x > 0 .
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•Regularly varying distributions are subexponential see e.g. Feller

(1971), EKM p. 37, hence long-tailed.

• Examples:

Pareto

log-gamma

infinite variance stable

Cauchy

student

Fréchet.
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•Regular variation is a natural condition in the context of

extreme value theory and limit theory for partial sums of iid

random variables: For an iid non-negative sequence (Xi) with

distribution F (x) = P (X > x) =
L(x)

xα
, x > 0,

Fréchet limit: n−1/α ℓ(n)Mn
d
→ YM ∼ Φα , α > 0 ,

Stable limit: n−1/α ℓ(n) (Sn − bn)
d
→ YS ∼ Pα , α ∈ (0, 2) .

The Fréchet distribution Φα(x) = exp{−x−α}, x > 0, is one of the max-stable or extreme

value distributions. The distribution Pα is called α-stable.

See Feller (1971), Ibragimov, Linnik (1971), Petrov (1975,1995) for sums; Galambos (1978),

Leadbetter et al. (1983), Resnick (1987,2006), EKM for maxima
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• There is also joint convergence for α ∈ (0, 2) see Resnick (1986):

n−1/αℓ(n)(Mn, Sn − bn)
d
→ (YM , YS) ,

and YS, YM are dependent.

• By the continuous mapping theorem,

(Sn − bn)/Mn
d
→ YS/YM .

• In particular, for α ∈ (0, 1),

Sn/Mn
d
→ YS/YM

and for α ∈ (1, 2)

(Sn − nEX)/Mn
d
→ YS/YM .
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• If α ≥ 2, there exist an, bn→∞ such that

(a−1
n (Sn − nEX) , b−1

n Mn)
d
→ (YS, YM) ,

YS, YM are independent, YS ∼ N(0, 1), YM ∼ Φα and

bn/an→ 0.

• In particular,

Mn/(Sn − nEX)
P
→ 0 .

• For general iid non-negative Xi, Mn/Sn
P
→ 0 if and only if

EX <∞ or P (X > x) = L(x)x−1 for some slowly varying L

O’Brien (1980), and Mn/Sn
P
→ 1 if and only if F (x) = L(x) Arov and

Bobrov (1960), Maller and Resnick (1984).
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2.4. Alternative definitions of regular variation.

•X > 0 is regularly varying with index α > 0 if and only if

P (X > tx)

P (X > x)
→ t−α , x→∞ , t > 0 .

•Replacing x by an with P (X > an) ∼ n
−1, one can show

equivalence with

nP (a−1
n X > t)→ t−α , n→∞ , t > 0 .(2.2)

• For iid copies Xi of X, (2.2) has the interpretation

E
(

n
∑

i=1

I(t,∞)(Xi/an)
)

→ t−α , t > 0 .
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Recalling Poisson’s limit theorem, (2.2) is equivalent to

n
∑

i=1

I(t,∞)(Xi/an)
d
→ Poisson(t−α) , t > 0 ,

• (2.2) is equivalent to the point process convergence

Nn =
n

∑

i=1

εXi/an
d
→ N ∼ PRM(µ) ,

where µ(t,∞] = t−α, t > 0, defines the mean measure of the

limiting Poisson random measure N with state space (0,∞].

• (2.2) can be shown to be equivalent to vague convergence of the

measures

nP (a−1
n X ∈ ·)

v
→ µ(·) on (0,∞].
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3. Some objectives in modeling extremal and heavy tail

phenomena

• The classical approach to EVT and extreme value statistics.

Assume (Xi) iid. Find appropriate limit distributions H,

constants cn > 0, dn ∈ R such that c−1
n (Mn − dn)

d
→ Y ∼ H.

(Fisher-Tippett theorem, 1928), see EKM, p. 121.

•Use this limit relation for estimating tails F (x) for large x and

high quantiles F←(p), possibly outside the range of the data.

de Haan and Fereira (2006)
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•More recent problems. EVT and statistics for spatio-temporal

structures: stationary or non-stationary time series and random

fields. Study the extremal properties of these structures.

•Multivariate structures: dependence measures for extremes

beyond covariances. The interplay between tails and extremal

dependence

• Infinite-dimensional structures: EVT for stochastic processes

and random fields

•Use notions from EVT to build models for description of heavy

tail phenomena, e.g. in telecommunications (file sizes,

transmission durations, transmission rates).
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4. Some point process theory

The theory of point processes plays a central role in extreme value

theory. Applications include:

•Derivation of joint limiting distribution of order statistics, i.e.,

kth largest order statistic, limiting distribution of maximum

and minimum, etc.

•Calculation of limit distribution of exceedances of a high level.

• Extensions to stationary processes.

• Provides a useful tool in heavy-tailed case for deriving limiting

behavior of various statistics, e.g., sample mean, sample

autocovariances, etc, which are often determined by the

behavior of the extreme order statistics.
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4.1. Definition and basic results.

• Suppose (Xt) is an iid sequence with common distribution F .

•Assume that there exist sequences of constants an > 0 and bn

such that

P (a−1
n (Mn − bn) ≤ x) = F n(anx+ bn)→ G(x)(4.1)

for all x, where Mn = max(X1, . . . , Xn) and G is a

nondegenerate distribution function.

• By extremal types theorem, G has to be an extreme value

distribution of which there are only three types, see Leadbetter et

al. (1983) or EKM.
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• Taking logarithms and using a Taylor series expansion, (4.1)

holds if and only if for any x ∈ R,

nP (a−1
n (X1 − bn) > x)→ − logG(x) .(4.2)

(If G(x) = 0 we interpret − logG(x) as ∞.)

•Now (4.2) can be strengthened to the statement,

nP (a−1
n (X1 − bn) ∈ B)→ ν(B)(4.3)

for all suitably chosen Borel sets B, where the measure ν is

defined by its value on intervals of the form (a, b] as

ν(a, b] = logG(b)− logG(a) .

The convergence in (4.3) can be connected with the convergence in

distribution of a sequence of point processes.
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For a bounded Borel set B in the product space (0, 1]× R, define

the sequence of point processes (Nn) by

Nn(B) = #{(t/n, a−1
n ( Xt − bn)) ∈ B , t = 1, . . . , n}

=
n

∑

t=1

ε(t/n,a−1
n (Xt−bn))(B) ,

where εy is the Dirac measure at the point y.

Properties:

• If B is the rectangle (a, b]× (c, d] with 0 ≤ a < b ≤ 1 and

−∞ < c < d <∞, then since the Xj are iid,

Nn(B) ∼Bin([nb]− [na], pn) ([s] = integer part of s), and

pn = P (a−1
n (X1 − bn) ∈ (c, d]) .
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• Provided ν(c, d] <∞, it follows from

nP (a−1
n (X1 − bn) ∈ B)→ ν(B)

that Nn(B) converges in distribution to a Poisson random

variable N(B) with mean µ(B) = (b− a) ν(c, d].

• In fact, we have the stronger point process convergence,

Nn
d
→ N ,(4.4)

where N is a Poisson process on (0, 1]× R with mean measure

µ(dt, dx) = dt× ν(dx) and
d
→ denotes convergence in

distribution of point processes.
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4.2. Convergence for point processes. For our purposes,
d
→ for

point processes means that for any collection of bounded Borel sets

B1, . . . , Bk for which P (N(∂Bj) > 0) = 0, j = 1, . . . , k, we have

(Nn(B1), . . . , Nn(Bk))
d
→ (N(B1), . . . , N(Bk))

on R
k; see EKM, Leadbetter et al. (1983), Resnick (1987).

Technical remarks:

• In the heavy-tailed case, the state space of the point process is

often defined to be (0, 1]× ([−∞,∞] \ {0}).

• For the space, [−∞,∞] \ {0}, the roles of zero and infinity

have been interchanged so that bounded sets are now those

sets which are bounded away from 0.
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•A bounded set on the product space is contained in the

rectangle [0, c]× ([−∞,−d] ∪ [d,∞]) for some positive and

finite constants c and d. Under this topology, the intensity

measure of the limit Poisson process is ensured to be finite on

all bounded Borel sets.



39

Application:

Define Mn,2 to be the second largest among X1, . . . , Xn. The event

{a−1
n (Mn,2 − bn) ≤ y} is the same as {Nn((0, 1]× (y,∞)) ≤ 1}, we

conclude from (4.4) that

P (a−1
n (Mn,2 − bn) ≤ y) = P (Nn((0, 1]× (y,∞)) ≤ 1)

→ P (N((0, 1]× (y,∞)) ≤ 1)

= G(y) (1− logG(y)) .
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Similarly, the joint limiting distribution of (Mn,Mn,2) can be

calculated by noting that for y ≤ x,

{a−1
n (Mn − bn) ≤ x, a

−1
n (Mn,2 − bn) ≤ y}

= {Nn((0, 1]× (x,∞)) = 0, Nn((0, 1]× (y, x]) ≤ 1}.

Hence,

P (a−1
n (Mn − bn) ≤ x, a

−1
n (Mn,2 − bn) ≤ y)

= P (Nn((0, 1]× (x,∞)) = 0, Nn((0, 1]× (y, x]) ≤ 1)

→ P (N((0, 1]× (x,∞)) = 0,N((0, 1]× (y, x]) ≤ 1))

= G(y)(1 + logG(x)− logG(y)) .
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4.3. More on convergence of point processes: If E denotes the

state-space for our point measures, (e.g., in the heavy-tailed case

E = (0, 1]× ([−∞,∞] \ {0})) or E = (0, 1]× (0,∞]), define

Mp(E) = Radon point measures

CK(E) = continuous functions on E with compact support.

Here Mp(E) is endowed with the topology induced by vague

convergence so that

mn→ m iff mn(f)→ m(f) for all f ∈ CK(E).

It follows that for a sequence of point processes (Nn),

Nn
d
→ N iff Nn(f)

d
→ N(f) for all f ∈ CK(E).
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4.4. Laplace functional convergence. Sometimes it is more

convenient to work with Laplace functionals in which case

Nn
d
→ N is equivalent to

E (exp{−Nn(f)})→ E (exp{−N(f)}) f ∈ C+
K(E).(4.5)

Remarks:

• The test functions f in (4.5) can be discontinuous as long as the

f-discontinuity set Df satisfies

P (N(Df) = 0) = 1

• If N is a Poisson random measure with intensity measure λ,

then

E (exp{−N(f)}) = exp

{

−

∫

E

(1− e−f(x))λ(dx)

}

.
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• Try taking f = 1(y,∞)(x) to show that N(f) = N((y,∞)) has a

Poisson distribution with mean λ(f) = λ(y,∞).

• Suppose (Xt), Xt ≥ 0 a.s. is an iid regularly varying sequence

with index α > 0. Then

nP (X1 > anx)→ x−α , x > 0 ,

where P (X1 > an) ∼ n
−1. With E = (0,∞], then one has

µn(·) = nP (X1/an ∈ ·)→ µ(·)

on Mp(E), where µ(x,∞] = x−α, x > 0. In particular,

µn(g)→ µ(g) for all g ∈ CK(E).

Since f ∈ C+
K(E) implies g = (1− e−f) ∈ C+

K(E),

µn(g) = nE(1− e−f(X1/an))→ µ(g) =

∫

E

(1− e−f(x))µ(dx)
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•Now consider the sequence of point processes

Nn =
∑n

t=1 εa−1
n Xt

. with Laplace functional

E(exp{−Nn(f)}) = E(exp{−
n

∑

t=1

f(Xt/an)})

= (E(exp{−f(X1/an)}))
n

= (1− nE (1− exp{−f(X1/an)}) /n)n

→ exp{−µ(g)}

= E exp{−N(f)} .

• Thus, Nn
d
→ N .

• The points of the limit Poisson process with mean measure

µ(x,∞) = x−α, x > 0, can be displayed in an explicit fashion.
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• Set Γk = E1 + · · ·+ Ek, where E1, E2, . . . are iid unit

exponentials. These are the points of a unit rate homogeneous

Poisson process on (0,∞).

• Then

Nn =

n
∑

t=1

εa−1
n Xt

d
→ N

d
=

∞
∑

k=1

ε
Γ
−1/α
k

.

• If we order the data, then we can read off the weak

convergence for the kth-largest Mn,k, i.e.,

a−1
n Mn,k

d
→ Γ

−1/α
k .

(These are joint in k as well.)
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4.5. Continuous mapping theorem: partial sum convergence.

•We illustrate the power of point process convergence in a

simple application of the continuous mapping theorem.

•Recall the continuous mapping theorem. If Nn
d
→ N and

T : Mp(E)→ R is an a.s. continuous mapping (relative to N),

then T (Nn)
d
→ T (N).

•Application to partial sums: Suppose (Xt) is an iid sequence of

positive random variables which are regularly varying with

index α < 1. Then

Nn =
n

∑

t=1

εa−1
n Xt

d
→ N =

∞
∑

k=1

ε
Γ
−1/α
k



47

• For m =
∑

j εyj define the mapping Tǫ(m) =
∑

j yj1{yj>ǫ} which

is a.s. continuous relative to the limit point process N .

• By CMT,

Tǫ(Nn) =
n

∑

t=1

a−1
n Xt1{Xt>ǫan}

d
→ Tǫ(N) =

∞
∑

k=1

Γ
−1/α
k I

{Γ
−1/α
k >ǫ}

Now, as ǫ ↓ 0,

Tǫ(N)→ S =
∞
∑

k=1

Γ
−1/α
k a.s.

and (with Sn =
∑n

t=1Xt)

E|a−1
n Sn − Tǫ(Nn)| ≤ na−1

n EX11(X1≤ǫan)

∼
α

1− α
na−1

n ǫanP (X1 > anǫ) (by Karamata’s theorem)

→
α

1− α
ǫ1−α as n→∞

→ 0 as ǫ→ 0 .
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• It follows from a standard weak convergence result that

a−1
n Sn

d
→ S =

∞
∑

k=1

Γ
−1/α
k .

The limit is the series representation of an α-stable random

variable.
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