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Overview

We consider trends in time series and spatial data.

We model these by power law functions with unknown exponents.

We consider asymptotic properties of parameter estimates.

A more general contribution is to proving consistency in mixed-rate problems.
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1. Motivation

Polynomial-in-time regression is one of the longest-established tools of time
series analysis:

yu = �1 + �2u+ �3u
2 + :::�pu

p�1 + xu; u = 1; 2; :::; N;

where xu is an unobservable error, with zero mean and constant, �nite variance
(but not necessarily serially uncorrelated).



The least squares estimate (LSE) of � = (�1; :::; �P )
0 is

b� = M�1m:

where
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If xu � NID(0; �2) then

b� � N(0; �2M�1):

So we can carry out exact statistical inference.



Moreover, we can rewrite the model in terms of orthogonal polynomials:

yu = 
1�
N
1 (u) + 
2�

N
2 (u) + 
3�

N
3 (u) + :::
p�

N
p (u) + xu; u = 1; 2; :::; N;

where

�N1 (u) = 1; �
N
2 (u) = u�(N+1)=2; �N3 (u) = u2�(N+1)u+(N+1)(N+2)=6; :::;

Then the LSE of the 

i
are independent, as well as normally disributed.

Correspondingly, the F -ratio statistic for testing

H0 : 
i = 0; i = 1; :::; p;

can be decomposed into p independent statistics whih can be used to test the
p individal hypotheses

H0i : 
i = 0

individually,and thereby test for a more parsimonious model.



The xu � NID(0; �2) assumption is extremely strong, however.

Returning to the original form

yu = �1 + �2u+ �3u
2 + :::�pu

p�1 + xu; u = 1; 2; :::; N;

suppose now that the xu are not necesarily normally distributed or independent.

Suppose xu is covariance stationary with spectral density

F (�) =
1

2�

1P
j=�1

E(xuxu+j)e
ij�; � � < � < �:

Suppose that F (�) is at least continuous and positive at � = 0 (as with
autoregressive moving average processes).



Aside (looking ahead to my future taks):

0 < F (0) <1

is one de�nition of short memory or short range dependence.If

F (0) =1; e.g. F (�) � ��2d; 0 < d < 1=2; as �! 0+;

we have short memory or short range dependence.

If

F (0) = 0; e.g. F (�) � ��2d; � 1=2 < d < 0; as �! 0+;

we have antipersistence or negative dependence.



Under

0 < F (0) <1

and mild additional assumptions,

D(b� � �)!d N(0; 2�F (0)Q
�1); as N !1; :

where

D = diag(N1=2; N3=2; :::; N (p+1)=2)

and Q is a known, positive de�nite matrix.

We can estimate F (0) and thence carry out approximate statistical inference
on �:

Moreover despite the dependence in xu; � is (asymptotically Gauss-Markov)
e¢ cient.



3. Power law / generalized polynomial model
for time series

Polynomial models have been extended to lattice spatial or spatio-temporal
data.

Though not all relevant time series theory has been explicitly extended to the
lattice case, this seems substantially possible.

Polynomials are nevertheless restrictive.



The Weierstrass theorem justi�es uniform approximation of any continuous
function over a compact interval, but seems less practically relevant the longer
the data set.

Also, polynomials do not allow for a decaying trend.

Nonparametric smoothing may be unreliable in series of moderate length, when
instead richer parametric models than polynomials might be considered.



One class that advantageously nests polynomials, and has received little theo-
retical attention, are "generalized polynomial" or "power law" models.

Consider the more general moddl

yu =
pP
j=1

�ju
�j + xu;

where the �j and �j are real-valued and all can be unknown, �j > �1=2 for
all j; and the zero-mean unobservable process xu is covariance stationary with
short memory.

Our original polynomial model is a special case (�j = j � 1 for all j), indeed
this is a hypothesis that might be tested.

When 0 > �j > �1=2 thereis a decaying trend component u�j:



Note that the model is now nonlinear in the parameter vector � = ( �1; :::; :�p)
0

� and � can be estimated by the nonlinear least squares estimates (NLSE:)

�b�; b�� = argminQ(h; b)
where

Q(b; h) =
NP
u=1

(yu �
pP
j=1

bju
hj)2:

�b�; b�� are not explicitly defned but require numerical optimization.



Because the bj are involved only quadratically we can eliminate them and apply
numerical optimization to a function of h (with b� then available by an explicit
side calculation).

Thus asymptotic theory, with sample size N increasing, is needed to justify
rules of statistical inference even when xu is NID.

This appears to be unavailable, indeed it can present some di¢ cult features.



Because the estimates are not explicitly de�ned, asymptotic distribution theory
makes use (in application of the mean value theorem) of an initial consistency
proof, as is common.

Most such proofs require regressors to be non-trending, whence under suitable

additional conditions all parameter estimates are N
1
2-consistent.



Mixed rates of convergence frequently arise (in the NLSE of our trend model
all rates di¤er, and for implicitly-de�ned extremum estimates like

�b�; b��they
are typically associated with di¢ culty in the initial consistency proof, due to
the objective function not converging uniformly to a function that is uniquely
optimized over the whole parameter space.

Consistency proofs here have tended to be derived in a somewhat ad hoc fash-
ion, geared to the case at hand.

The approach we develop is likely to apply to a quite general class of estimates
(not just the NLSE) of a variety of models.



4. Background to consistency proof for implicitly-
de�ned extremum estimates

Wald (1949), Wolfowitz (1949) proved respectively stong and weak consistency
for ML estimates (see also Aitchison and Silvey (1958), Huber (1964), Hoadley
(1971) etc).

Jennrich (1969), Malinvaud (1970) used similar ideas for NLSE.

These ideas also apply to a large class of implicitly-de�ned extremum estimates.



Consider objective function QN(h); Rp ) R; based on sample size N .

Let � � Rp, let

�̂ = �̂N = arg min
h2�

QN(h)

exist.

A typical consistency theorem is as follows.



Theorem A Suppose there exists

� 2 �;
such that we can write

QN(h)�QN(�) = UN(h) + VN(h);
where for any " > 0 there exists � > 0 such that

inf
kh��k�"

UN(h) � �; 8 large enough N;

and

sup
h2�

jVN(h)j !p 0 as N !1:

Then

�̂ !p �; as N !1:



Correspondingly, much of the literature assumes that QN(h) converges (uni-
formly) to a function that is uniquely minimized over � (often assumed com-
pact), as in the nonlinear regression

yu = f(zu; �) + xu

with approximately stationary regressors zu and errors xu; and

QN(h) =
1

N

NX
u=1

fyu � f(zu;h)g2 :

Actually "stability" is not required.



Let

N = fh : h 2 �; kh� �k < "g , �N = ��N :

Then

P



�̂ � �


 � ") � P

 
inf
�N
fQN(h)�QN(�)g � 0

!

� P

 
inf
�N
UN(h)� sup

�
jVN(h)j � 0

!

� P

 
sup
�
jVN(h)j =inf

�N
UN(h) � 1

!
;

which ! 0 if

sup
�
jVN(h)j =inf

�N
UN(h) = op(1);

so it is relative rates of numerator and denominator that matter (and UN(h)
might be stochastic).



Moreover, there is further "slack" in the method.

E.g if

yu = f(zu; �) + xu; QN(h) =
1

N

NX
u=1

fyu � f(zu;h)g2 ;

then

UN(h) =
1

N

NX
u=1

ff(zu; �)� f(zu;h)g2 ;

VN(h) =
2

N

NX
u=1

ff(zu; �)� f(zu;h)gxu:

Then with inf
�N
UN(h) > � we might also have sup

�
jVN(h)j = Op(N�1=2):



Wu (1981) explicitly focussed on nonstationary possibilities, giving milder suf-
�cient conditions for

lim
N!1

inf
�N
fQN(h)�QN(�)g > 0 (i:p: or a:s:)

in case of NLSE with iid, �nite variance, errors.

These tend to be di¢ cult to check but it seems that his and other proof methods
described above are of limited value when � is a vector.

The proof methods seem able to handle only limited variation of rates over the
elements of �:



5. Generic consistency proof for mixed-rate
problems

We give a generic consistency proof that seems to apply in many cases.

It also delivers rates that are not optimal, but nearly so (and our relative rates
re�ect relative optimal ones).

We consider a neighbourhood N that is ellipsoidal and shrinks as n increases,
with rate varying across dimensions.

This partly exploits the "slack" in the previous approach, because we can a¤ord
to make inf �N UN(h) smaller.



But we also use the fact that VN(h) is small when h is close to �; e.g.

VN(h) =
2

N

NX
u=1

ff(zu; �)� f(zu;h)gxu:



We split �N into �nitely many "donuts", over each of which take sup of VN(h)
and inf of UN(h).

Let �i � R, i = 1; :::; p; and de�ne � = �
p
i=1�i; so � � Rp.

For positive scalars Ciw; i = 1; :::; p; w = 1; 2; :::; such that Ciw � Ci;w+1,
i = 1; :::; p, de�ne Cw = (C1w; :::; Cpw), and

Ni(Ciw) = fhi : jhi � �ij < Ciwg ; �Ni(Ciw) = �inNi(Ciw);

N (Cw) =
p
�
i=1
Ni(Ciw); �N (C) =

p
�
i=1

�Ni(Ciw);

Sw = �N (Cw) \N (Cw+1):



Theorem B Let there exist a �nite integer W ; also Ciw, w = 1; :::;W + 1,
depending on N , such that

� � N (CW+1)

for N su¢ ciently large, and let

sup
Sw
jVN(h)j =infSw

UN(h)!p 0; as N !1; w = 1; :::;W:

Then

�̂ = � +Op(C1); as N !1;

where Op(C1) is a vector with i-th element Op(Ci1).

(Also a.s. convergence version.)



To check the conditions in speci�c cases it is convenient to refer to positive
norming sequences sw; w = 1; :::;W , depending on N; such that s1 < ::: <

sW and s1 !1 as N !1:

Then we need to show that for some �nite W we can choose Cw ,w =

1; :::;W + 1; and sw; w = 1; :::;W; such that

plim
N!1

inf
Sw
UN(h)=sw > 0; w = 1; :::;W;

sup
Sw
jVN(h)j =sw ! p 0; as N !1; w = 1; :::;W;

� � N (CW+1):



6 Spatial/spatio-temporal model and its esti-
mation

Let the integer d � 1 represent the dimension on which data are observed,
where d = 1 for time series and d � 2 for spatial or spatio-temporal data.

Let u now be the d�dimensional multi-index u = (u1; u2; :::; ud)0 :



Denoting Z = fj : j = 0;�1; :::g ; consider

yu =
dP
i=1

piP
j=1

�iju
�ij
i + xu = f(u; �)

0� + xu; u 2 Zd;

where xu is described subsequently and

� =
�
�01; :::; �

0
d

�0
; �i =

�
�i1; :::; �ipi

�0
;

� =
�
�01; :::; �

0
d

�0
; �i =

�
�i1; :::; �ipi

�0
;

f(u; �) =
�
f1(u1; �1)

0; :::; fd(ud; �d)
0�0 ;

fi(ui; �i) =
�
u
�i1
i ; :::; u

�ipi
i

�0
;

for i = 1; :::; d:

De�ning p = p1+ :::+ pd; the p� 1 vectors � and � are supposed unknown.



One of the d dimensions could be time, in which case we have a spatio-temporal
model.

The spatial or spatio-temporal model potentially involves even more � parame-
ters than the the series one, exacerbating the "mixed-rate" issue.

But it is an issue even in the time series case d = 1:



7. Asymptotic properties of the estimates

Our consistency proof con�nes the NLSE of � to a compact subset � of

�
�1
2
;1

�p
which also contains �.

We introduce two assumptions which imply identi�ability of � and �.

Assumption 1 � 2 �:

Assumption 2 �ij = 0 for at most one (i; j) ;�ij 6= 0 for all (i; j) :

We allow an intercept, but do not speci�cally include one.



Given

N =
Qd
i=1 ni

observations on yu; u 2 N = N1� :::�Nd; Ni = (1; :::; ni); de�ne the NLSE
of �; � by �b�; b�� = arg min

b2Rp;h2�
Q(b; h);

where

Q(b; h) =
P
u2N

n
yu � b0f(u;h)

o2
:



Asymptotic normality requires further assumptions.

The �rst entails short range dependence of the xu:

(We could cover long range dependence and negative dependence also, leading
to di¤erent rates.)

Assumption 3 xu, u 2 Zd, is covariance stationary with zero mean, and
its autocovariance function, 
u = cov (xt; xt+u), for the multi-index t =
(t1; :::; td)

0, satis�es
P
u2Zd j
uj <1:

The next assumption, of increase with algebraic rate of observations in all
dimensions, is capable of generalization, and employed for simplicity.

Assumption 4 ni � BiN
bi, i = 1; :::; d, as N ! 1; where Bi > 0,

bi > 0, i = 1; :::; d;
Qd
i=1Bi =

Pd
i=1 bi = 1:



De�ne �ij = bi�ij; and with no loss of generality, identify dimension i = 1

such that

�11 = min
1�i�d

f�i1g ;

where, if two or more i satisfy this, an arbitrary choice is made.

Theorem 1 If Assumptions 1-4 hold, for j = 1; :::; pi, i = 1; :::; d; as N !
1;

�̂ij � �ij = Op
�
N���ij�

1
2

�
;

for any � > 0:

As is common with initial consistency proofs a sharp rate (corresponding to
� = 0) is not quite delivered (smoothness conditions, in particular, are not
exploited).



Theorem 1 is used in the proof of our central limit theorem (CLT), for which
we also need consistency, with a rate, for �̂.

Theorem 2 If Assumptions 1-4 hold, for j = 1; :::; pi, i = 1; :::; d;

�̂ij = �ij +Op

�
(logN)N���ij�

1
2

�
, as N !1:



The relative rates for the �̂ij and �̂ij in Theorems 1 and 2 are matched by
relative rates that feature in our CLT.

For this we introduce �rst

Assumption 5 xu =
P
v2Zd �v"u�v,

P
v2Zd j�vj <1, u 2 Z

d; where v is

the multi-index v = (v1; :::; vd)
0;
n
"u; u 2 Zd

o
are independent random vari-

ables with zero mean and unit variance,
n
"2u; u 2 Zd

o
are uniformly integrable,

and
P
v2Zd �v 6= 0:

Assumption 5 implies Assumption 3, and both imply existence and boundedness
of the spectral density

F (�) = (2�)�1
���Pv2Zd �veiv0����2

of xu; where � is the multi-index � = (�1; :::; �d)
0; while Assumption 5 implies

also F (0) > 0.



Introduce p� p matrices

D = N
1
2diag

�
n
�11
1 ; :::; n

�1p1
1 ; :::; n

�d1
d ; :::; n

�dpd
d

�
; L(s) = diag fL1(s1); :::; Ld(sd)g ;

where Li(si) = (log si)Ipi; and 2p� 2p matrices

D+ = I2 
D; L+ = diag fIp; L(n)g :

De�ne � = (�0; �0)0; b� = (b�0; b�0)0:
Let B be a certain p � 2p matrix depending only on �, and � a certain
nonsingular p� p matrix depending only on �:

Denote by Nr(a;A) an r-dimensional normal vector with mean vector a and
(possibly singular) covariance matrix A:



Theorem 3 If Assumptions 1, 2 and 5 hold, as N !1

D+L
�1
+ (b�� �)!d N2p

�
0; 2�F (0)B0��1B

�
:



Comments:

1. With known �, long-established techniques give

D
�
�̂ � �

�
!d Np

�
0; 2�F (0)��1

�
;

for a known, nonsingular matrix �; so our ignorance of � incurs not only e¢ -
ciency loss in estimating �, but slightly slower convergence.

2. Theorem 3 also implies a singularity in the limit distribution, whose covari-
ance matrix has rank p only.

This is due to bias in �̂, which on expansion is seen to have a term linear in
�̂ � � that dominates the contribution from �u2Nf(u; �)xu.

But Theorem 3 does provide separate inference on �, though given Assumption
1 we cannot test zero restrictions.



3. If independence of the xu is not assumed, the limiting covariance matrix
in Theorem 3 can be consistently estimated (under additional conditions) by
replacing F (0) by a parametric or smoothed nonparametric estimate based on
regression residuals.

4. The form of the limiting covariance matrix in Theorem 3, with dependence
simply re�ected in the factor 2�F (0); suggests that a generalized NLSE, which
corrects parametrically or nonparametrically for correlation in xu; a¤ords no
e¢ ciency improvement (as in the.original polynomial model).



8. Monte Carlo study of �nite-sample perfor-
mance

A Monte Carlo study provides some information on �nite sample performance.

Issues of concern, given unknown �, are bias and variability of the NLSE, and
accuracy of large sample inference rules suggested by Theorem 3.

We took d = 2, p1 = p2 = 1, and the xu iidN1 (0; 1) normal variables, picking
2 (�1; �2) = (�11; �21) combinations - (1; 1), (0:5; 2) - but throughout took
�i1 = [�0:45; 4], �i = �i1 = 1, i = 1; 2.

We varied N absolutely and also the relative n1; n2, taking n1; n2 = (8; 12);

(10; 10); (11; 20); (15; 15).



Tables 1 and 2 report, for the respective parameter combinations, bias (BIAS),
mean squared error (MSE), and empirical size at 5% (SIZE5) and 1% (SIZE1)
for �̂i, �̂i; and also ~�i; the LSE of �i that correctly assumes �, for i = 1; 2,
across 1000 replications.

The sizes were proportions of signi�cant estimates, using normal critical val-
ues scaled by estimated standard deviations, which in case of the �̂i, �̂i were
computed on the basis of Theorem 3 with current parameter estimates replac-
ing true values of �; �, and 2�F (0) replaced by the sum of squared residuals
divided by N (so the spatial independence of the xu was treated as known, as
it was also in the, conventional, scaling used for the ~�i).

The tables reveal a de�nite inferiority of the NLSE relative to the LSE, but
unsurprisingly, as the LSE is exactly unbiased, more e¢ cient, and yields exact
critical regions.



Though the NLSE-based tests on � are nearly always over-sized, this phenom-
enon diminishes with increased N , and overall the discrepancy between the
performances of the two classes of � estimate does not seem very serious.

There is also a predominate over-sizing of the tests on �, but again this falls
as N increases, and in Table 2, in particular, it is often modest.

There is a tendency for the NLSE to over-estimate, but for �; biases only exceed
2% of the parameter value when ni = 8, ni = 12, and for � they never reach
1%, while overall they mostly fall with increasing N , as does the MSE.



Table 1: �1 = 1; �2 = 1; �1 = 1; �2 = 1; �
2 = 1



n1 n2
b�1 b�2 b�1 e�1 b�2 e�2

8 12

BIAS
MSE
SIZE5
SIZE1

0.008
0.016
0.100
0.044

0.007
0.007
0.125
0.048

0.024
0.080
0.151
0.075

0.000
0.001
0.048
0.010

0.017
0.051
0.166
0.084

0.000
0.000
0.055
0.010

10 10

BIAS
MSE
SIZE5
SIZE1

0.005
0.010
0.132
0.055

0.009
0.009
0.132
0.050

0.016
0.060
0.180
0.084

-0.001
0.006
0.053
0.015

0.009
0.063
0.186
0.090

0.002
0.007
0.051
0.011

11 20

BIAS
MSE
SIZE5
SIZE1

-0.002
0.003
0.086
0.030

0.002
0.001
0.104
0.039

0.016
0.022
0.115
0.051

0.000
0.000
0.039
0.005

-0.007
0.010
0.120
0.049

0.000
0.000
0.051
0.012

15 15

BIAS
MSE
SIZE5
SIZE1

0.003
0.002
0.074
0.024

0.002
0.002
0.075
0.022

0.006
0.013
0.108
0.033

0.000
0.000
0.043
0.010

-0.001
0.013
0.103
0.037

0.000
0.000
0.039
0.010



Table 2: �1 = 2; �2 = 1=2; �1 = 1; �2 = 1; �
2 = 1



n1 n2
b�1 b�2 b�1 e�1 b�2 e�2

8 12

BIAS
MSE
SIZE5
SIZE1

0.008
0.014
0.063
0.028

0.001
0.001
0.060
0.012

0.024
0.071
0.087
0.038

0.003
0.005
0.077
0.029

-0.002
0.001
0.053
0.014

-0.000
0.000
0.090
0.034

10 10

BIAS
MSE
SIZE5
SIZE1

0.008
0.013
0.069
0.033

0.000
0.003
0.057
0.013

0.020
0.074
0.101
0.047

0.004
0.004
0.058
0.015

0.000
0.001
0.065
0.017

-0.000
0.000
0.039
0.009

11 20

BIAS
MSE
SIZE5
SIZE1

0.005
0.005
0.052
0.017

-0.000
0.000
0.054
0.012

-0.001
0.028
0.069
0.017

-0.002
0.002
0.030
0.012

0.000
0.000
0.059
0.011

0.000
0.000
0.041
0.006

15 15

BIAS
MSE
SIZE5
SIZE1

0.002
0.004
0.058
0.018

0.001
0.001
0.044
0.011

0.004
0.025
0.070
0.019

0.001
0.001
0.081
0.019

0.004
0.000
0.043
0.010

0.000
0.000
0.055
0.020




